ASPCS
 
Back to Volume
Paper: Latitudinal Dependence of Coronal Hole-Associated Fast Solar Wind
Volume: 484, Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere
Page: 263
Authors: Zhao, L.; Landi, E.
Abstract: The fast solar wind can have at least two different coronal sources: high-latitude, polar coronal holes (PCH) and low-latitude, equatorial coronal holes (ECH). The in-situ differences in the PCH and ECH winds have not been well studied, nor have the differences in their evolution over the solar cycles. Ulysses' 19 years of observations from 1990 to 2009, combined with ACE observations from 1998 to the present, provide us with measurements of solar wind properties that span two entire solar cycles, which allow us to study the in-situ properties and evolution of the coronal hole-associated solar wind at different latitudes. In this work, we focus on the PCH and ECH solar winds during the minima between solar cycles 22–23 and 23–24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses, and SWICS, SWEPAM, and MAG on board ACE to analyze the proton dynamics, heavy ion composition, elemental abundance, and magnetic field properties of the PCH wind and ECH wind, with a special focus on their differences during the recent two solar minima. We also include the slow and hot, streamer-associated (ST) wind as a reference in the comparison. The comparison of PCH and ECH wind shows that: 1) the in-situ properties of ECH and PCH winds are significantly different during the two solar minima, and 2) the two types of coronal hole-associated solar wind respond differently to changes in solar activity strength from cycle 23 to cycle 24.
Back to Volume