Back to Volume
Paper: Effects of Magnetic Fields on Winds and Disks
Volume: 337, The Nature and Evolution of Disks Around Hot Stars
Page: 88
Authors: Brown, J.C.; Cassinelli, J.P.
Abstract: The problems facing magnetically guided wind models for the generation of stellar disks are outlined, particularly in relation to Be stars. Various parametric, analytic and numerical treatments have been published; some with and some without rotation, but all considering dipole like magnetic fields that can steer the star's wind to create a compressed equatorial region, variously termed; Magnetically Torqued Disk ( MTD), Magnetically Rigidized Disk, or Magnetically Confined Wind Shocked Disk. The essential issues are A) What field and rotation are required to create a MTD that is dense enough to generate emission line Equivalent Widths, the observed level of intrinsic polarization, and IR excesses? B) Can semi-corotational velocity fields be reconciled with observed line profiles and with the long term V/R variations normally attributed to spiral density waves in a Keplerian disk? C) What limits the lifetime of such a disk? D) Can the Keplerian disks model be reconciled with the fact that recently observed B fields in some early B type stars are large enough for MTD production. E) Can any other model predict as well as MTD does, the range of Spectral types in which disks are observed. F) What are the critical observations that might test the MTD model?
Back to Volume