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Abstract.  Big Data is not only about big volumes but also a higher number of di-
mensions of the data. For every observed astronomical object, we usually have multiple
observations in different times, wavelengths, polarization, or even created by different
instrument types. Intuitively, taking all of the relevant information into account will
produce higher quality results for classification or clustering algorithms, rather than
just focusing on a single aspect of the object. Most often we are talking about spec-
troscopic and photometric observations which can be combined into data cubes. With
the Hierarchical Semi-Sparse data cubes (HiSS cubes) engine we combine spectral and
imaging data within the HDF5 format for efficient use of machine learning algorithms
and visualization. The HiSS cube ensures this efficiency by implementing an indexing
mechanism within the HDF5 that also takes advantage of the native chunking feature.
Preprocessing that rescales the spectral and photometry measurements, in order to be
directly comparable, takes significant time. Therefore, it needs to be parallelized, and
this parallelization also takes advantage of the native HDF5 parallel I/O feature. This
contribution focuses on the parallel performance of the Python version h5py of the
HDF5-based solution in the construction of the HiSS cube.

1. HiSS cube

The HiSS cube (Nadvornik et al. 2021) is a software framework that has two purposes:
1) Providing fast API for machine learning algorithms that require the spectral cubes as
a stream of data. 2) Enabling fast visualization of multi-resolution spectra and images
and their combined spectral cubes, mainly for purposes of validating the machine learn-
ing results. The motivation is to show that combined multi-modal data (such as spectra
and images) can be processed as input for machine learning and will provide higher
quality results than to run the machine learning separately on images and spectra. For
the overall architecture of the framework, see Fig. 1. It describes the data flow stages
comprising of Preprocessing, HiSS-Cube, Sparse Cube VOTable and Contiguous data
stream.

The HDF5 ! storage format is designed for use as a self-sustaining portable file,
which can be viewed as a container file system, thereby making it easier to distribute
and maintain the data. HDF5 uses Groups as alternatives to folders, Datasets as alter-
natives to files.
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Figure 1.  Data flow pipeline for HiSS-Cube. The data are combined in a single
HiSS-Cube HDFS5 file, which is indexed via HEALPix (Gorski et al. 2005) to allow
efficient queries. For data export, we use either combination of VOTables and FITS
files to ensure compatibility with existing Virtual Observatory tools or a contiguous
NumPy array that can be utilized by a machine learning library.

For our experiments, we have used SDSS spectra and images. For example result
of Sparse Cube VOTable visualized in TOPCAT client (Taylor 2005), see Fig. 2.
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Figure 2.  Screenshot of two randomly selected galaxies exported to VOTable and
visualized in TOPCAT with uncertainties. The data cube contains images in five
filters and spectra of both galaxies.

2. Parallelization

The preprocessing requires significant processing time, as shown on Fig. 3. Unfor-
tunately, the HDF5 - add cutout links for Spectra preprocessing is not paralllelizable
because of limitations of HDF5. The other phases, such as HDF5 - write metadata and
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HDF5 - write index + data are fast, so the parallelization of preprocessing focuses only
on FITS - read+preprocess part.

For the parallel architecture see Fig. 4. The write groups + allocate datasets +
write attributes actions are done by a single writer in a serial access mode to the HDF5
file. h5py can write to the HDFS5 file in collective mode where all of the processes
can write simultaneously. Because of the nature of these writes, however, it is faster
and more efficient if a single writer is used. Multiple writers do the parallel writes to
preallocated datasets for images, and then, after synchronizing on a barrier, for spectra.
After these are written, the Master process reopens the file again in serial mode, and
writes the links to spectra and images as HDF5 region references.
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3. Results

Fig. 5 shows the activity of MPI (MPIF 1994) processes in time. The tool used is MPI
Parallel Environment.> The black background means there is no communication
between the processes, i.e. the processes are fully occupied by the preprocessing. The
first line is the master process 0 that mostly waits for preprocessing tasks to be com-
pleted (MPI_Mprobe). After metadata are written (MPI_barrier for processes 1-8), all
eight slaves perform preprocessing in parallel. The HDFS writes (MPI_File_write_at)
show that the HiSS-Cube is using efficiently the I/O capabilities of HDF5 with room
for further improvement in the I/O Bandwidth, see Fig. 6.

4. Summary

In our experiment, the efficiency is heavily limited because we simulated parallel I/O
on a single disk field. Fig. 6 shows that we reach the disk field bandwidth limit with a
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Figure 5.  Post-mortem visualization of execution Preprocessing
times of one master and eight MPI slave processes. bandwidth.

reasonable number of cores per I/O node, with the FITS reading and parsing being the
limiting factor. If this would be run on a true parallel 1/O disk storage, the efficiency
would remain above 80%, as can be seen in Fig. 6 for 2 or 3 cores. Our next steps
will be optimizing the HDFS parameters, such as the overall number of chunks used or
the number of groups which will further increase the write bandwidth by reducing the
number of write requests per second.

Overall, the performance of HDF5 parallel writes surpassed our expectations for
write performance but other obstacles will be hopefully removed by future work, mainly
with metadata operations that are performed in serial mode and do not scale well for
10TB+ HiSS cube files.
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