Numerical Modeling of Space Plasma Flows: ASTRONUM-2012
ASP Conference Series, Vol. 474

N. V. Pogorelov, E. Audit, and G. P. Zank, eds.

©2013 Astronomical Society of the Pacific

Hybrid Parallelization of Adaptive MHD-Kinetic Module in
Multi-Scale Fluid-Kinetic Simulation Suite

Sergey N. Borovikov'!, Jacob Heerikhuisen'?, and Nikolai V. Pogorelov'?

YCenter for Space Plasma and Aeronomic Research, University of Alabama in
Huntsville, AL 35805

2Physics Department, University of Alabama in Huntsville, AL 35805

Abstract. The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool
set for solving partially ionized flows. In this paper we focus on recent developments
of the kinetic module which solves the Boltzmann equation using the Monte-Carlo
method. The module has been recently redesigned to utilize intra-node hybrid par-
allelization. We describe in detail the redesign process, implementation issues, and
modifications made to the code. Finally, we conduct a performance analysis.

1. Introduction

Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is a state-of-the-art tool for
modeling partially ionized plasma flows. Charged particles are modeled by solving the
ideal MHD equations whereas neutral particles are modeled either by solving the Boltz-
mann equation using Monte-Carlo method (Baranov & Malama 1993; Heerikhuisen
et al. 2006) or using a multi-fluid approach (Zank et al. 1996). In the latter method,
different populations of neutral atoms are assumed to have Maxwellian distribution
functions and each fluid is described by the Euler equations. The multi-fluid approach,
although computationally inexpensive, works best when the regions of origins of dif-
ferent fluids are well defined. That is not the case in simulations of the heliosphere
for interstellar magnetic fields above 3uG or for the long heliotail simulation where
the population of neutrals born in the heliosheath has very different properties close to
the termination shock from those in the distant tail. As a result, modeling neutrals by
solving the Boltzmann equation becomes a necessity in many cases even if it is more
computationally expensive.

The Boltzmann equation for neutrals and the ideal MHD equations for plasma
are solved together via global iterations. For the current configuration of plasma, the
Monte Carlo code is run until appropriate statistics are accumulated to calculate the
source terms for the plasma. After that, the plasma code is run for some time. This
procedure is repeated until a steady state is reached. A Monte Carlo method for solv-
ing the Boltzmann equations is based on injecting test particles into a computational
region and gathering statistics for the charge-exchange source terms instead of solving
the 6D Boltzmann equation directly. The kinetic module was successfully developed
and tested (Heerikhuisen et al. 2006; Pogorelov et al. 2009) and its 1D and 2D versions
were successfully integrated into the MS-FLUKSS (Borovikov et al. 2008). 3D simu-
lations, however, have been performed until recently without adaptive mesh refinement

219

220 Borovikov, Heerikhuisen, and Pogorelov

(AMR) capabilities of the MS-FLUKSS (Heerikhuisen & Pogorelov 2011). This cre-
ated a lot of inconveniences in practical usage including complicated job scripts to run
the code on parallel computers and unnecessary utilization of file systems for data ex-
change. However, a main drawback of the kinetic code was the fact it was using solely
MPI for parallelization. Each MPI task had its own copy of plasma data which means
that a 12-core node had 12 allocated identical arrays. This led to serious limitations on
the physical problems that could be solved with the code. For example, high resolu-
tion simulations of the solar wind (SW) interaction with the local interstellar medium
(LISM) or astrotail modeling could not be conducted with the old version of the code.
Therefore, the following list of improvements was created after a careful evaluation of
the existing code.

e Plasma data and arrays storing the source terms for the MHD code must be shared
among the cores of a single node. This can be done by switching parallelization
approach from a pure MPI to a hybrid (MPI+OpenMP) method, where particles
are distributed between MPI tasks and threads. The major challenge is to update
the source term arrays when charge exchange occurs between neutrals and ions
preventing data racing and performance deterioration.

e [oad balancing problem. The load balancing should be a 2-level algorithm that
guarantees an even workload between nodes and threads within a single node.

o Input/output (I0) modifications. The kinetic module is written in Fortran and
uses Fortran binary files to output data. These files are not easily portable be-
tween different machines or programming languages because Fortran adds record
markers to files which are compiler and system specific. If one needs to read a
file using a different language, e.g., C++, these markers must be treated manu-
ally by skipping certain fragments of a file. Since the size of the markers is not
regulated by the Fortran standard, usage of Fortran files is very inconvenient.

e Full 64-bit support. The code must be able to handle more than 2 billion particles.

2. Modifications of the kinetic code

The plasma module in the MS-FLUKSS has domain-driven parallelization, i.e., a com-
putational region is split between processors and every MPI task computes only in the
specified region. The kinetic code splits the workload between ranks by ensuring ap-
proximately even distribution of particles among cores. The plasma data is gathered
into a set of arrays (each array represents a level of refinement in the plasma code)
which is passed from the main C++ code to the kinetic code using a specially created
interface. A similar set of arrays is created and passed to the kinetic code for collection
of the source terms and the neutral atom distribution. The arrays are shared between
threads that are spawned in the main subroutine of the kinetic code.

When a neutral particle experience charge exchange, the information about this
event must be stored in the arrays for source terms. This can be done, for example, by
creating a critical section that prevents simultaneous updates of the arrays. However,
this approach will lead to a significant performance deterioration because the arrays are
updated frequently and the threads will spend a lot of time waiting to enter the critical
region. To solve this problem, a special buffer is created which is an array of special

Hybrid parallelization 221

data structure representing a single charge exchange event. This user-defined data struc-
ture has the following fields: a) index of the finest level in nested grids hierarchy where
charge exchange occurs; b) position where charge exchange happens; c¢) physical quan-
tities of the event (mass loss, momentum and energy data). When charge exchange
occurs, the corresponding data is written to the buffer, not to the global arrays. The
buffer is an array of the data structure and its size is chosen on a random basis for each
thread to make simultaneous requests to update the arrays highly unlikely. Its typical
size varies from 200,000 to 600,000 elements. When the buffer is full it is flushed to
the main array. This is done via a critical section in the code.

The load balancing algorithm was also completely rewritten. The old version used
an iterative approach when two MPI processors with the greatest and the least num-
ber of particles are identified. The processors perform particle exchange to have even
number of particles. This procedure is repeated until disbalance between particles is
less than a predefined threshold. This approach is not optimal because each iteration
requires several collective communications, which are expensive. The new approach
uses a similar idea, but its implementation is completely different. An MPI task that
has the largest number of particles sends excess particles to a task with the least num-
ber of particles. If the excess is too big, some particles are sent to a task having the
second least number of particles, etc. On the other hand, if deficit of particles is too
big on some processor, it can receive particles from different MPI tasks. Each MPI task
receives information about the number of particles the other tasks have. This is the only
global collective communication. This information allows each rank to calculate the av-
erage number of particles per core and determine the communication scheme for load
balancing. Of more interest, is that each rank knows the whole communication pattern
(which of them will send/receive and how many particles will be transfered). Each MPI
rank initiates a series of non-blocking send or receive calls. When the communication
is complete the load balancing within node is performed using a similar approach.

Input/output is now performed using the hdf5 format. We take full advantage
of parallel 10 subroutines and parallel file systems. The chosen file format is easily
transferable and manageable.

Initially, the new code demonstrated a very poor hybrid performance. It did not
scale with the number of threads, moreover, the performance noticeably deteriorated as
number of threads increased. Performance analysis revealed that the code spent most
of its time generating random numbers. Eventually, it was discovered that the GNU
Fortran random number generator shares seeds among threads and uses mutexes to
regulate their update. This significantly deteriorated the overall performance. We have
implemented our own random number generator where each thread has its own set of
seeds, which has resolved this problem.

3. Performance of the new code

Our first test is to compare the performance with a different number of threads per MPI
task. This test was performed on Cray XT5 Kraken with two six-core AMD Istanbul
processors per node. We use 16 nodes and 50 million particles in our test case. The runs
ranged from 192 MPI tasks and no threads, to 16 MPI tasks each spawning 12 threads.
The results are summarized in Table 1. If hybrid parallelization is not used, the run time
18 180 seconds. The code works faster when two threads are used, because the number
of MPI calls is reduced by a factor of two. When the number of threads is further

222 Borovikov, Heerikhuisen, and Pogorelov

All MPI | 2 threads | 3 threads | 6 threads | 12 threads
Time (sec) | 180 167 170 181 208

Table 1. Performance comparison of the kinetic code with different numbers of
threads per MPI task.

increased, the code slows down because synchronization between the threads requires
more time. The case with 12 threads per MPI task gave the worst performance. This
happened because of the Non-Uniform Memory Access (NUMA) design of the Kraken
nodes. Each processor has its own local memory. Although processor can access the
other processor memory, the memory bandwidth in this case is 20% smaller than the
access time to local memory. For this reason, we observed the performance decrease
by 15%.

To perform scaling tests, we used the BlueWaters supercomputer recently installed
at the National Center for Supercomputing Applications (NCSA), located at the Uni-
versity of Illinois at Urbana-Champaign. This is Cray a XE6/XK7 machine. The XE6
nodes have two AMD Interlagos processors, whereas XK7 nodes contain one AMD
processor and the NVIDIA GK110 “Kepler” accelerator. We used the XE6 nodes for
the tests. Each Interlagos processor has 16 integer cores. There are 8 floating point
units (FPU) per processors, e.g. a FPU is shared between two integer cores. Eight inte-
ger cores form a NUMA domain. To perform our runs, we used 1 MPI task per NUMA
domain to keep shared data in one domain. Totally, we had 4 MPI tasks per node and
each one spawned additional 8 threads. For the strong scaling tests we used 12 billion
particles and the physical run time was 800 years. The strong scaling results are al-
most perfect (see Figure 1) and there is even a superscaling effect when we switch from
20k to 40k cores. This is explained by a better cache fitting speedup that overpasses
the extra communication load. Figure 2 shows the weak scaling results when there is
approximately an even load of 100,000 particles per core in each test. The simulation
time is equal in all cases, but for some small insignificant fluctuations.

Number of Time | Speed up | Ideal 3
cores (sec) z
20,000 1003 £
40,000 484 2.07 2 H
80,000 251 [1.93 2 P
96,000 209 1.20 1.2 =
120,000 167 1.25 1.25 “ Number of cores (x1000)

Figure 1. Strong scaling results of the kinetic code. The green line shows ideal
performance. The red circles are measured time.

The IO performance of the code is also surprisingly good. A 650Gb data file
containing 10 billion particles can be written as fast as 32 seconds on Lustre file system
if it is striped over 100 Object Storage Targets (OSTs).

We also explored the opportunities to speed up the plasma code using available
cores. Since number of grid blocks (patches) is less than the number of available cores,
we needed to focus on how to speed up calculations on a single patch. We tried two
different approaches: (a) auto-parallelization of low-level loops that are done by com-

Hybrid parallelization 223

Number of Time § 20

cores (sec) ¢ 200F

20,000 164 L of —— "
40,000 159 8 ook

80,000 168 e

96,000 177 g
120,000 167 - 20 R umbe? of cares (x1800) 0 %

Figure 2. Weak scaling results of the kinetic code.

piler and (b) dimension splitting parallelization when reconstruction and solving of the
Riemann problem is done in parallel by creating one thread for each dimension. Both
approaches gave approximately the same speedup, close to a factor of two. There are
some methods to speed up the code even more, e.g. nested parallelism, which will be
explored in the future.

4. Simulation results

A new version of the MHD-kinetic code was used to perform the calculations of the
SW-LISM problem. We used the following SW and LISM parameters, which were pr-
posed by McComas et al. (2012). At 1 AU the SW number density ng = 7.4cm™>, the
radial velocity ug = 450kms~!, the temperature 7 = 51100K, and the radial com-
ponent of the magnetic field is B, = 37.5uG. The LISM proton number density, ve-
locity, temperature and magnetic field strength are n,, = 0.13cm™, 4o, = 23.2kms™!,
To = 6200K, B, = 2uG, respectively. The neutral H density is npe. = 0.22cm™.
The velocities and temperatures of hydrogen atoms and ions in the LISM coincide in
thermodynamic equilibrium. The LISM vector V, is aligned with the neutral He veloc-
ity vector, which is (4, 8)ge = (254°,5°) in the Heliocentric Aries Ecliptic (HAEj»000)
coordinates (Lallement et al. 2010). The interstellar magnetic field (ISMF) direction
was chosen to fit the ribbon observed by the IBEX (Heerikhuisen et al. 2013). The
normalized ISMF vector points toward (4, 8) = (221°,39°).

The calculations are performed on quadrilateral Cartesian meshes in the computa-
tional region [-1000, -850, —850] x [680, 830, 830] AU in the x-, y-, and z-directions,
respectively. The base grid is 1683 cells. Mesh refinement for plasma is performed by
introducing three additional grid levels. The grid size at each upper level being half of
the next level down. These meshes are nested as they approach the Sun. The results of
the simulation are shown in Figure 3. These results correctly reproduce the major fea-
tures of the SW-LISM interaction (the termination shock, the heliopause, the hydrogen
wall, the weakened bow shock) and are exactly the same as obtained by the previous
version of the code. This validates the correctness of the new code (Heerikhuisen et al.
2013).

5. Conclusion

The new implementation of the MHD-kinetic simulations in MS-FLUKSS is a signifi-
cant step forward in our capability to model the SW-LISM interaction. It significantly

224 Borovikov, Heerikhuisen, and Pogorelov

nrho
0.4000
0.3733
0.3467
0.3200
0.2933
0.2667
0.2400
02133
0.1867
0.1600
0.1333
0.1067
0.0800
0.0533
0.0267
0.0000

density
0.4000
0.2562
0.1641
0.1051
0.0673
0.0431
0.0276
0.0177
0.0113
0.0072
0.0046
0.003¢
0.0019
0.0012
0.0008
0.0005

nrho
0.4000
0.3733
0.3467
0.3200
0.2933
0.2667
0.2400
02133
0.1867
0.1600
0.1333
0.1067
0.0800
0.0533
0.0267
0.0000

density
0.4000
0.2562
0.1641
0.1051
0.0673
0.0431
0.0276
0.0177
0.0113
0.0072
0.0046
0.003¢
0.0019
0.0012
0.0008
0.0005

0
X X

0

Figure 3. Simulation results. Top row: plasma density and neutral density dis-
tributions in the meridional plane. Bottom row: plasma density and neutral density
distributions in the equatorial plane.

reduces the time necessary to perform the simulations. Even more interesting is the
capability it gives us to tackle previously intractable problems. Long tail simulation
results will be used in the future to analyze Lyman-a absorption in the directions of
nearby stars.

Acknowledgments. The work presented here was supported in part by NASA
grants', and DOE grant DE-SC0008334. Supercomputer time allocations were pro-
vided on SGI Pleiades by NASA High-End Computing Program award SMD-12-
3071, Cray XT5 Kraken by NSF XSEDE project MCA07S033. This research is
part of the Blue Waters sustained-petascale computing project, which is supported by
the NSF (award number OCI 07-25070) and the state of Illinois. This work is also
part of the “Modeling Heliophysics and Astrophysics Phenomena with a Multi-Scale
Fluid-Kinetic Simulation Suite” PRAC allocation support by the NSF (award number
1144120).

INNH09AM471, NNX09AP74A, NNX10AE46G, NNX12AB30G

Hybrid parallelization 225

References

Baranov, V. B., & Malama, Y. G. 1993, J. Geophys. Res., 98, 15157

Borovikov, S. N., Heerikhuisen, J., Pogorelov, N. V., Kryukov, 1. A., & Zank, G. P. 2008, in
Numerical Modeling of Space Plasma Flows, edited by N. V. Pogorelov, E. Audit, &
G. P. Zank, vol. 385 of Astronomical Society of the Pacific Conference Series, 197

Heerikhuisen, J., Florinski, V., & Zank, G. P. 2006, J. Geophys. Res., 111, A06110

Heerikhuisen, J., & Pogorelov, N. V. 2011, ApJ, 738, 29

Heerikhuisen, J., Zirnstein, E., Pogorelov, N. V., & Zank, G. P. 2013, ApJ, in preparation

Lallement, R., Quémerais, E., Koutroumpa, D., Bertaux, J., Ferron, S., Schmidt, W., & Lamy,
P. 2010, Twelfth International Solar Wind Conference, 1216, 555

McComas, D. J., Alexashov, D., Bzowski, M., Fahr, H., Heerikhuisen, J., Izmodenov, V., Lee,
M. A., Mobius, E., Pogorelov, N., Schwadron, N. A., & Zank, G. P. 2012, Science, 336,
1291

Pogorelov, N. V., Heerikhuisen, J., Zank, G. P., & Borovikov, S. N. 2009, Space Sci.Rev., 143,
31

Zank, G. P., Pauls, H. L., Williams, L. L., & Hall, D. T. 1996, J. Geophys. Res., 101, 21639

