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Abstract. Direct centrifugal ejection of matter from a near-critically rotating equa-
torial surface of hot stars leads to the outflowing viscous decretion disk formation. The
mass and angular momentum loss via such disks can significantly influence the evo-
lution of rapidly rotating stars. The viscosity plays a key role in the outward angular
momentum transport as well as in the disk thermal energy generation. We study the dy-
namics of the outer parts of outflowing viscous disks, which is important for the stellar
angular momentum loss. We conclude that the outer disk structure is determined by the
spatial variations of the disk temperature and alpha viscosity parameter.

1. Basic Theoretical Considerations

The decrease of the moment of inertia due to the stellar evolution may bring the star
to the proximity of the critical rotation. A critically rotating star can not spin up any
further, consequently the further decrease of the moment of inertia leads to equatorial
mass ejection. The net loss of angular momentum is given by

L̇ = İΩcrit, (1)

where L̇ is the time rate of change of angular momentum, İ is the rate of moment of
inertia decrease, and the critical rotation frequency is

Ωcrit =

√

GM/R3
eq. (2)

The viscosity transports angular momentum to some outer disk radius Rout, which is
typically Rout � Req. The angular momentum loss from the decretion disk may in this
case greatly exceed the angular momentum loss from the stellar wind outflow.

2. Disk Structure

The following hydrodynamic equations describe the structure of the disk integrated
over the vertical direction. The mass conservation is (Okazaki 2001; Maeder 2009)

R
∂Σ

∂t
+
∂

∂R
(RΣVR) = 0, (3)

where Σ is the vertically integrated surface density, VR is the radial component of ve-
locity. The equation of conservation of the radial component of momentum gives

∂VR

∂t
+ VR

∂VR

∂R
=
V2
φ

R
−
GM

R2
−

1

Σ

∂(a2Σ)

∂R
+

3

2

a2

R
, (4)
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Figure 1. Dependence of relative radial and azimuthal velocities and angular mo-
mentum loss rate L̇/L̇K(Req) on radius for various temperature profiles. L̇K(Req) is
the angular momentum loss rate assuming mass loss directly from the stellar equator.
Constant viscosity α = 0.1 is considered. Arrows mark the critical radius Rcrit as a
location of a sonic point where the radial velocity VR = Vcrit = a.

where Vφ is the azimuthal component of velocity, a is the speed of sound a2 = kT/(µmu),
µ is the mean molecular weight, mu is the atomic mass unit. For the conservation of the
azimuthal component of momentum we have

∂Vφ

∂t
+ VR

∂Vφ

∂R
= −

VRVφ

R
−

1

R2Σ

∂

∂R
(αa2R2Σ). (5)

For the calculations of viscosity we consider here models with power law viscosity
decline adopting the α parameter (Shakura & Sunyaev 1973), α = ṽt/a, where ṽt means
the average velocity of the turbulent motion of the gas eddies. Here we introduce

α = α0(Req/R)n, (6)

where α0 is the viscosity of the inner region of the disk near the stellar surface and
n is a free parameter to describe the radial viscosity decline, n > 0. From Eq. 4 in
the stationary case follows that at the disk critical point Rcrit, where the radial velocity
equals the speed of sound, one has

V2
φ

R
−
GM

R2
+

5

2

a2

R
−
∂a2

∂R

∣

∣

∣

∣

Rcrit

= 0. (7)

This condition determines the (inner boundary) radial velocity of gas elements at the
stellar surface. The viscous torque between adjacent segments of the disk causes vis-
cous dissipation, the temperature of the optically thin outer part of the disk is strongly
affected by the irradiation from central star (Lee, Osaki, & Saio 1991). A large portion
of radiation will be reflected out of the optically thick part of the disk, consequently the
radiative cooling must also be included. For a simplification we assume the temperature
profile in a form of the power law

T = T0(Req/R)p, (8)
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Figure 2. Same as Fig. 1 with variable α parameter. The inner boundary viscosity
α0 is set 0.1, the viscosity profile is estimated here as a radial power law α ∼ R−0.2.

where T0 is the temperature of the disk near the stellar surface and p is a free parameter
(p < 1) with estimated values in range between 0 and 0.4. The temperature distribu-
tion in the inner region of the disk is nearly isothermal (T0 =

1
2
Teff , p = 0, Carciofi &

Bjorkman 2008), but for the calculations of the structure of outer part of the disk it is
reasonable to consider also the power law temperature decline.

3. Numerical Approach

We solve the system of hydrodynamic equations in cylindrical coordinates including the
mass conservation equation (Eq. 3) and the R and φ components of the equation of mo-
mentum conservation (Eqs. 4 and 5) supplemented by appropriate boundary conditions
(Okazaki 2001; Krtička, Owocki, & Meynet 2011) assuming a stationary flow. We se-
lected the star with parameters corresponding to the spectral type B0 (Harmanec 1988),
the effective temperature Teff = 30 000 K, mass M = 14.5 M�, and radius R = 5.8 R�.
For the numerical differentiation at selected radial grid we use the Newton-Raphson
method.

4. Models

We examine behaviour of radial and azimuthal velocity and the angular momentum
loss in the disk with various temperature and α viscosity profiles. In case of constant
viscosity (see Fig. 1) the disk rotates in an inner region with Keplerian velocity VK(R),
in a supersonic region its azimuthal velocity as well as the angular momentum loss rate
rapidly decrease, and at large radii these quantities may become in this model even
negative.

We present here two models where the viscosity profile is estimated as a radial
power law. From the model with α ∼ R−0.2 (see Fig. 2) follows that for lower values of
parameter p in temperature profile the values of angular momentum loss at large radii
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Figure 3. Same as Fig. 1, the inner boundary value of viscosity α0 is set 0.1, vis-
cosity profile behaves like α ∼ R−n, where n = 0.4.

remain constant, this implies that the decrease of azimuthal velocity at large radii obeys
R−1. For higher values of parameter p in temperature profile the radial velocity may
not reach the critical velocity Vcrit, at large radii may azimuthal velocity and angular
momentum loss rate rapidly decrease. Fig. 3 shows another model with α ∼ R−0.4 where
the profiles are similar as in the previous case but with stronger radial dependence, for
lower values of parameter p the angular momentum loss in supersonic region remains
constant up to very large radii, the azimuthal velocity profile consequently obeys R−1.
For higher values of parameter p the radial velocity profile remains deeply subsonic.

5. Conclusions

The model with constant viscosity shows the unphysical decrease of angular momen-
tum loss at large radii. As a solution of this problem we introduce the models with
power law viscosity decline, up to certain value of p parameter in temperature profile
the models show constant angular momentum loss in supersonic region.
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