
Accretion and Ejection in AGNs: A Global View
ASP Conference Series, Vol. 427, 2010
L. Maraschi, G. Ghisellini, R. Della Ceca, and F. Tavecchio, eds.

Numerical Studies of Relativistic Jets

Ramesh Narayan,1 Alexander Tchekhovskoy,1 and Jonathan McKinney
2

1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
Cambridge, MA 02138, USA
2Kavli Institute for Particle Astrophysics and Cosmology, Stanford
University, Stanford, CA 94305, USA

Abstract. The connection between collimation and acceleration of magne-
tized relativistic jets is discussed. The focus is on recent numerical simulations
which shed light on some longstanding problems.

1. Introduction

Understanding the physics of relativistic jets, notably their acceleration and
collimation, has been a major area of study for several decades. It is widely
agreed that jets are a magnetic phenomenon. The basic paradigm involves a
bundle of field lines that is attached at its base to a central compact star – a
black hole (BH) or a neutron star – or to an accretion disk. Rotation of the
star and/or disk causes a helical outgoing magnetohydrodynamic (MHD) wave
which accelerates any gas that is frozen into the field lines.

A great deal of analytical work has been done on jets, and the reader is
referred to Begelman & Li (1994), Vlahakis & Königl (2003a,b), Beskin & Nokh-
rina (2006), Narayan, McKinney, & Farmer (2007), Lyubarsky (2009a,b), and
references therein, for an introduction to the vast literature. However, the equa-
tions describing MHD jets are nonlinear and the problem is complicated, so
there is a limit to how far analytic methods can go. Fortunately, in recent years,
numerical investigations have begun to contribute to the field, facilitated by the
development of robust relativistic MHD codes (Koide et al. 2000; Komissarov
2001; McKinney & Gammie 2004; De Villiers et al. 2005; McKinney & Narayan
2007a,b; Komissarov et al. 2007, 2009; Tchekhovskoy et al. 2008; Tchekhovskoy
et al. 2009; Tchekhovskoy et al. 2009b,c).

2. Force-Free Jets

Before considering the full MHD problem, it is useful to focus on force-free jets.
The force-free approximation is a simplification of ideal MHD in which we include
electric and magnetic fields, and the corresponding charges and currents, but we
ignore the inertia of the gas. The problem thus reduces to pure electrodynamics
in a perfectly conducting medium. This very simple approximation provides
surprisingly useful insight into the general problem.
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2.1. Collimation

Michel (1973) derived an analytical solution for a force-free wind from a rotating
star. He assumed a split monopole configuration in which the magnetic field is
radial and has a constant strength at the surface of the star, with lines pointed
into the star over one hemisphere and out over the other hemisphere.

The rotation of the star causes the magnetic field to develop a toroidal
component Bφ which dominates with increasing distance: Bφ = −(ΩR/c)Bp,
where Ω is the angular velocity of the star, R is cylindrical radius with respect
to the rotation axis, and Bp is the field strength in the poloidal (rθ) plane.
Even though Bφ dominates over Bp at large radii (|Bφ/Bp| = |Ω|R/c ≫ 1),
nevertheless there is no change in the poloidal geometry – the poloidal field
continues to remain radial. This is surprising since the tension associated with
toroidal field curvature, the so-called hoop stress, is very large. Why does this
not collimate the jet? It turns out that hoop stress is pefectly canceled by an
electric force in the opposite direction, and hence there is no net tendency to
collimate the flow. (This is a purely relativistic phenomenon – the electric field
is negligible in nonrelativistic MHD.)

A similar result is seen in the paraboloidal force-free solution derived by
Blandford (1976) and Blandford & Znajek (1977), and a more general class of
self-similar force-free solutions studied by Narayan et al. (2007). Although hoop
stress is very large at large distance from the base of the jet, once again it has
small or no effect on the collimation of the jet.

All this suggests that a relativistic jet is unlikely to self-collimate. It needs
to be collimated by an external agency. Assuming that the jets in active galac-
tic nuclei (AGN) and X-ray binaries (XRBs) are associated with field lines from
a spinning accreting BH, these jets must be confined by a wind from the sur-
rounding accretion disk. In the collapsar model of gamma-ray bursts (GRBs),
the confinement is presumably due to the stellar envelope of the collapsing star.
If no confining medium is present, as in the case of relativistic outflows from
radio pulsars, the flow is nearly radial.

2.2. Acceleration

Force-free jets accelerate very efficiently. In the simplest geometries, viz., split
monopole and paraboloidal, the Lorentz factor of the outflow varies asymptoti-
cally as γ ≈ |Ω|R/c, increasing linearly with cylindrical radius. In the case of a

paraboloidal jet, γ ∝ z1/2 (since R ∝ z1/2), where z is distance along the jet.

For more general geometries such as R ∝ z(2−ν)/2 (Narayan et al. 2007), γ
depends both on the value of |Ω|R/c and on the poloidal curvature of field lines.
As a result, the run of γ with z exhibits two distinct asymptotic regimes (see
Tchekhovskoy et al. 2008 for details). Nevertheless, at any given z, the field line

with the largest Lorentz factor still satisfies γ ∝ z1/2. Thus, this simple and
convenient scaling appears to be fairly general.

2.3. Jet Power

Since a force-free jet is purely electromagnetic, the energy flux is given by the

Poynting vector c ~E × ~B/4π. For a rotating axisymmetric jet, E = (ΩR/c)Bp

and is pointed perpendicular to the poloidal field line in the (rθ) plane. In
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a relativistic jet, electric and magnetic fields are nearly equal in magnitude
(§2.1.), E ≈ |Bφ|, and so the poloidal component of the energy flux is given by
c|EBφ|/4π = (ΩR)2B2

p/4πc. Applying this result at the BH horizon, the total

electromagnetic power flowing out of a spinning BH is given by Pjet = kcΦ2
totΩ

2
H ,

where Φtot is the total magnetic flux threading the horizon, ΩH is the angular
frequency of the spacetime at the horizon, and k is a constant which depends
on the field geometry (see Tchekhovskoy et al. 2009b for details). Although this
result for Pjet is derived for a force-free jet in the limit of a slowly spinning BH
(Blandford & Znajek 1977), it turns out to be surprisingly accurate even for
rapidly spinning BHs, and also for MHD jets (Tchekhovskoy et al. 2009b).

One interesting question is whether the Ω2
H scaling of power is sufficient to

explain the radio loud/quiet dichotomy of AGN. Observations indicate a factor
of 1000 difference in radio power between radio loud and quiet AGN (Sikora et al.
2007). Can this be entirely due to differences in the BH spins of the underlying
populations? Tchekhovskoy et al. (2009b) show that a model in which the
BH is surrounded by a thick accretion disk, such that the jet subtends only a
narrow solid angle around the axis, has a steep variation of jet power with spin
– Pjet ∝ Ω4

H or even Ω6
H (a similar steep dependence was observed by McKinney

2005 in simulations of rotating BHs surrounded by thick turbulent tori). Such
a model is perfectly compatible with the observed radio loud/quiet dichotomy,
whereas a BH with a thin disk around it would have Pjet ∝ Ω2

H and would not
exhibit a large enough range of jet power. The above explanation of the radio
loud/quiet dichotomy requires AGN jets, especially in low-luminosity systems, to
be associated with thick advection-dominated accretion flows (ADAFs). There
is, in fact, independent evidence for such a connection (Narayan & McClintock
2008).

2.4. Stability

According to the Kruskal-Shafronov criterion (e.g., Bateman 1978), cylindrical
MHD configurations in which the toroidal field dominates are violently unstable
to the m = 1 kink (or screw) instability. Since all models of relativistic magne-
tized jets have Bφ ≫ Bp, jets ought to be highly unstable. The instability has
been confirmed by numerical simulations (Moll et al. 2008; Mizuno et al. 2009).
Why then are the jets observed in Nature coherent over enormous length scales?

Narayan, Li, & Tchekhovskoy (2009) studied the stability of force-free jets
and found that the growth rate of the kink mode is quite low. There are two
reasons for this. First, although jets may have Bφ ≫ Bp in the “lab frame,”
they typically have Bφ ∼ Bp in the comoving frame of the fluid. This makes the
instability less severe. Second, as a result of time dilation, the growth rate as
measured in the lab frame is further suppressed by a factor of 1/γ. Note that
this study was limited to a very simple force-free model. The stability of more
realistic relativistic MHD jets is an open question.

3. Relativistic MHD Jets

We now consider MHD jets with gas inertia, though, for simplicity, we ignore
gas pressure. A steady axisymmetric MHD flow has a number of conserved
quantities: (i) The angular velocity Ω is constant along any field line. (ii) The
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Figure 1. [Panel (a)] Solid lines show Lorentz factor γ, magnetization pa-
rameter σ and conserved energy flux µ (= 450) as a function of distance
r (roughly in units of the BH horizon radius) along an equatorial field line
(θ = 90◦) for a mass-loaded split-monopole outflow. Initially, γ increases
rapidly with r. However, beyond the fast point (indicated by the vertical dot-
ted line), it grows only logarithmically. As a result, even at astrophysically
relevant distances, γ is only ∼ 40 and most of the energy remains locked up
in the magnetic field: σ ∼ 10. This is the σ problem. [Panel (b)] Similar to
panel (a), but for a polar field line at θ = 10◦. The two vertical dotted lines
show the positions of the fast point (left) and the causality point (right). Here
the flow continues to accelerate beyond the fast point and up to the causality
point. As a result, the jet is less affected by the σ problem and achieves a
larger final Lorentz factor γfinal ∼ µ. (Based on Tchekhovskoy et al. 2009)

net mass flowing along a bundle of field lines is conserved, which means that the
quantity γρvp/Bp is constant along each field line, where ρ is the mass density
in the rest frame of the gas and vp is the poloidal 3-velocity of the gas in the
lab frame. (iii) The angular momentum flowing along the bundle of lines is
conserved. (iv) Finally, the energy flowing along the bundle is also conserved,
which implies that (hereafter we set c = 1)

µ =
{

| ~E × ~Bφ/4π| + (γ2ρvp)
}

/γρvp = constant, (1)

where the first term in the numerator is the Poynting energy flux and the second
is the gas kinetic energy flux. This equation may be rewritten as

µ = γ(σ + 1), σ = | ~E × ~Bφ/4π|/(γ2ρvp), (2)

where the magnetization parameter σ represents the ratio of electromagnetic to
kinetic energy flux at any point in the flow.

3.1. Acceleration and the σ Problem

Equation (2) has a simple interpretation. At the base of the jet, before the
gas has accelerated, we have γ ≈ 1, and so the energy flow is almost entirely
in the form of Poynting flux: σ ≫ 1, µ ≫ 1. Here the jet is magnetically
very dominated and it behaves for all intents like a force-free jet. As the jet
moves out, γ increases and the kinetic energy flux grows at the expense of the
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Poynting flux. Thus σ decreases, but in such a way as to keep µ constant. If the
acceleration is efficient, then we expect σ to become vanishingly small at large
distance and all the initial energy to end up in the gas; we would then have
γ = γmax = µ. In fact, this ideal is rarely achieved.

The problem is most clearly seen in the split monopole geometry, where
analytical results are available for equatorial field lines (Michel 1969; Beskin
et al. 1998; Tchekhovskoy et al. 2009). The flow accelerates initially just as in
the force-free case, with γ ∼ |Ω|R/c. However, once the flow speed exceeds the

fast magnetosonic wave speed in the medium, which happens when γ ∼ µ1/3, or
equivalently when γ ∼ σ1/2 (from eq. 2 with µ≫ 1), the gas loses contact with
gas behind it and acceleration slows down drastically. Beyond this point, there
is only a growth in γ of order a logarithmic factor, so the final γ is given by
γfinal ∼ Cσ1/2, where C is a logarithm. If µ is large, as it must be for a highly
relativistic flow, the asymptotic value of σ remains large and most of the energy
is still carried in the form of Poynting flux rather than as gas kinetic energy.
This is called the σ problem.

The σ problem is illustrated by a numerical example in Fig. 1a. As we
see in this example, the problem is not a lack of energy; µ = 450, which means
there is plenty of energy available and the gas could in principle accelerate up
to γmax ∼ 450. However, it only accelerates up to γfinal ≃ 40, and the rest of the
energy remains stuck in the magnetic field.

Simulations such as those shown in Figs. 1, 2 of this paper are challenging
and have only recently become possible thanks to the general relativistic MHD
code HARM (Gammie et al. 2003, with recent improvements by Tchekhovskoy
et al. 2007, 2008). There are two difficulties with these calculations. First,
the large value of σ means that the electromagnetic and kinetic terms in the
energy equation are very different in magnitude. The equations are thus stiff,
making it very difficult to maintain accuracy. Second, magnetic acceleration
is relatively slow: γ varies only as z1/2 even when acceleration is efficient, and
it grows logarithmically when it is inefficient. Therefore, in order to obtain
useful results, it is necessary to simulate relativistic jets over very large length
scales, which is obviously challenging. As of this writing, only one other group
(Komissarov and collaborators) is able to carry out such calculations.

3.2. No σ Problem for Collimated Jets!

Observations suggest that relativistic jets in Nature do not suffer from the σ
problem. Lind et al. (1989) showed that the interaction of a jet with an external
medium is very different depending on whether σ ≪ 1 or σ ≫ 1. In the former
case there is a clear working surface (hot spot) where the jet shocks with the
medium, and there is also a well-defined backflow in a cocoon. This is similar to
what is observed in FR II jets. In contrast, a magnetically dominated jet drills
through the medium and has hardly any cocoon. It thus appears that AGN
jets manage to achieve small values of σ before they shock with the external
medium. Why are they not limited by the σ problem?

A key clue was provided by Tchekhovskoy et al. (2009) who showed that
equatorial and polar field lines in the split monopole geometry behave very dif-
ferently. This is illustrated in Fig. 1b which shows that acceleration along a
polar field line continues well past the fast magnetosonic point. In fact, acceler-
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Figure 2. The dotted lines in panel (a) show the variation of γ, σ and
µ (≈ 900) as a function of distance r (BH units) for an MHD jet that is
confined by a rigid wall with a shape given by R ∝ z5/8. As for all externally
collimated jets, we see that this model does not suffer from the σ problem.
Asymptotically, the jet achieves a large Lorentz factor γ ≈ µ and a low
magnetization σ ≪ 1. The dotted line in panel (b) shows the variation of
the jet opening angle θ, and in panel (c) the product γθ. Note that γθ . 1,
which is a general feature of fully collimated jets. Solid lines in the three
panels correspond to a jet that is confined out to a distance r = 104.5 and is
then allowed to move freely in vacuum. The jet undergoes rapid acceleration
just as it exits into vacuum (see panel a), but its opening angle does not
change (panel b). As a result, asymptotically, the jet has nearly the same
Lorentz factor as in the previous example, γ ∼ µ/2, σ ∼ 1, but now γθ ∼ 15
(panel c). This model may be relevant for understanding GRB jets. (Based
on Tchekhovskoy et al. 2009c)

ation slows down only after the gas crosses another critical point, the “causality
point,” beyond which it can no longer communicate with the axis. The intro-
duction of this new critical point means that the final Lorentz factor of the gas
is a function of the angle θ between the poloidal field and the axis:

γfinal sin θ ∼ Cσ1/2, (3)

where C is the same logarithmic factor as in §3.1.. The smaller the value of θ,
the larger the γfinal that the gas achieves for a given value of µ. Thus, flows that
remain close to the axis accelerate more efficiently.

This result is confirmed by numerical simulations of paraboloidal and other
types of confined jets. The dotted lines in Fig. 2 show an example of a jet with
µ ∼ 103 confined by a rigid wall. This jet accelerates with no trouble up to γfinal

of nearly 103, achieving an asymptotic σ < 0.1. The lesson from this example is
that, so long as a jet is provided adequate collimation, it can accelerate smoothly
without being limited by the σ problem.

3.3. How are γ and θ related?

One additional interesting result is seen in Fig. 2: while γ increases, the jet
angle θ simultaneously decreases. In fact, it appears that γθ ∼ 1, as noted
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by Komissarov et al. (2009). Do relativistic jets always satisfy this constraint?
This question can be answered by studying GRB jets, where observations provide
reliable information on both γ and θ (e.g., Piran 2004).

Long duration GRBs typically accelerate to γ ∼ few hundred before de-
celerating in their afterglow phase. At the same time, jet breaks observed in
GRB afterglows indicate typical jet opening angles θ ∼ 0.05 radian. Thus, GRB
jets apparently have γθ ∼ few tens, which violates the Komissarov et al. (2009)
relation mentioned above.

Fortunately, there is a simple explanation. The solid lines in Fig. 2 show
a second simulation in which the jet is initially confined over a few decades in
distance and it is then allowed to move freely in vacuum. This is meant to mimic
a collapsar in which the jet is confined so long as it is inside the stellar envelope,
but becomes free once it escapes from the star. In this numerical example, we
see that the gas experiences a burst of acceleration just as it is deconfined, but
without changing its opening angle. Asymptotically, the jet satisfies the scaling
given in equation (3) with C ∼ 10. The particular simulation shown here has
γfinal ∼ 500, θfinal ∼ 0.04, σfinal ∼ 1, which is close to typical values observed
in GRBs. (Note that σfinal is not directly measured. The fact that GRBs emit
a substantial fraction of their energy in prompt emission indirectly implies that
their jets are not Poynting-dominated.)

There is room for further work in this area. For instance, if observations by
the Fermi Observatory routinely find γfinal > 103 (Kumar & Barniol Duran 2009)
and θfinal ∼ 0.1 (Cenko et al. 2009) for many GRBs, we would need to explain
why these jets have γθ > 100. The constant C in equation (3) is a logarithmic
factor and is unlikely to be much larger than about 10−20. Therefore, either we
must accept that σ ≫ 1, i.e., GRB jets are Poynting-dominated and somehow
manage to convert a large fraction of their energy to prompt gamma-rays, or
that MHD is not the appropriate framework for understanding GRB jets.

4. Conclusion

The main message of the work described here is that collimation is the key
to relativistic jets. If a jet is suitably confined by an external medium, it will
accelerate without difficulty. While GRB jets have a natural collimating medium
in the surrounding stellar envelope, the situation is less obvious for jets in AGN
and XRBs. A disk wind is the most likely collimator in these systems, which
suggests that many prominent jets are probably associated with geometrically
thick accretion disks with strong winds and outflows, i.e., ADAFs of various
kinds (Narayan & McClintock 2008). This connection is worth exploring further.

Equation (2) shows that the maximum Lorentz factor that a jet can achieve
is equal to µ. A highly relativistic jet requires a large value of µ, which means
that the jet must start out very magnetically dominated at its base, with negligi-
ble mass-loading. There is very little understanding of how mass-loading works.
Qualitatively, one imagines that field lines that are connected to the disk have
a ready supply of disk gas for mass-loading, whereas lines that penetrate the
BH horizon are more likely to be mass-free. One thus suspects that the most
extreme jets probably emerge from spinning BHs rather than from disks.
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Finally, in all of our discussion we assumed that a coherent magnetic field
is already present in the system. The origin of this field is not understood. It
could be advected in by the accretion disk from outside. However, the efficiency
of such advection is poorly understood and the topic is controversial.
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