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Abstract. We present a numerical method for integrating the equations
describing a system made of a fluid and cosmic-rays. We work out the mod-
ified characteristic equations that include the CR dynamical effects in smooth
flows. We model the energy exchange between cosmic-rays and the fluid, due to
diffusive processes in configuration and momentum space, with a flux conserv-
ing method. For a specified shock acceleration efficiency as a function of the
upstream conditions and shock Mach number, we modify the Riemann solver
to take into account the cosmic-ray mediation at shocks without resolving the
cosmic-ray induced substructure. A self-consistent time-dependent shock solu-
tion is obtained by using our modified solver with Glimm’s method. Godunov’s
method is applied in smooth parts of the flow.

1. Introduction

The system of equations describing a one-dimensional nonrelativistic fluid cou-
pled to suprathermal cosmic-ray particles (heretofore CR) through the exchange
of momentum and energy reads
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where (ρ, u, Pg, eg) indicate the gas density, velocity, pressure and specific energy
respectively, with eg = u2/2 + eth and eth the specific thermal energy. A γ-law
equation of state, eth = Pg/ρ(γg − 1), is assumed. The CR pressure, Pc, is
defined through the CR distribution function f(x, p, t) as
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where p is momentum in units of ‘mcc’, with mc the CR particle mass. ‘f’ evolves
according to the diffusion-convection equation Skilling (1975)
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where κ(x, p) is the spatial diffusion coefficient, bℓ(p) ≡ −(dp/dt)loss describes
the particle momentum losses and Dp(p) is the momentum diffusion coefficient.
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Finally, the source term Σ in Eq. (3) describes the exchange of energy between
CRs and the fluid Miniati (2007)
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where bmℓ(p) includes mechanical losses only (i.e. radiative losses are excluded).
In smooth flows and on large enough scales, λ ≫ λmfp ∼ κ(p)/c (e.g.

λ ≃ 0.01pc for κ(GeV/c) ≃ 1027cm2s−1, Hartquist & Morfill 1986), the pres-
ence of CRs enhances the propagation speed of sound waves but simultaneously
causes damping of their amplitude due to CR diffusion Parker (1965). In addi-
tion energy is exchanged non adiabatically between the thermal and nonthermal
components according to the Σ term in Eq. (3). This term arises from dif-
fusive processes and it seems plausible that as long as the relevant transport
coefficients, κ and Dp, are correctly provided, it can be properly modeled nu-
merically.

Around shocks the diffusion process gives rise to an efficient mechanism for
transferring energy from the flow to the particles Drury (1983). In this case, in
solving numerically the system of Eq. (1-5), a major difficulty arises due the large
disparity between the microphysics scales where the exchange of momentum and
energy between fluid and CR particles takes place, on the one hand, and the large
macroscopic scales of astrophysical systems that one is interested in modeling, on
the other. In fact the backreaction of the particles changes the shock’s structure,
jump conditions and propagation speed Achterberg et al. (1984); Malkov (1997),
i.e. it has macroscopic consequences. However, the diffusion process responsible
for such modification operates on scales that range from the shock thickness
up to the diffusive scale length of the highest energy CR particles, λκ(pmax) =
κ(pmax)/ushock, where ushock is the shock speed. These microscopic scales cannot
be resolved simultaneously with the large scales characterizing astrophysical
systems. In addition, diffusive shock acceleration is characterized by a rich
variety of complex plasma processes. Therefore, one quickly realizes that an
explicit numerical treatment of this process makes sense only when specifically
studying the physics of the shock acceleration process itself Ellison & Eichler
(1984); Donohue & Zank (1993); Berezhko et al. (1994); Jones & Kang (2005).
If on the other hand one is interested in the CR dynamical contribution on
large astrophysical scales Miniati et al. (2001); Hanasz et al. (2004); Pfrommer
et al. (2006), a simplified approach should be taken Miniati (2001); Enßlin et
al. (2007), which allows to calculate with some degree of accuracy the source
terms on the RHS of Eq. (1-3) and, likewise, modify the shock solution of the
fluid equations for the effects due to the CR mediation. In this second approach
one specifies as part of the simulation input parameters: (a) the CR transport
coefficients in terms of the macroscopic thermodynamic properties of the fluid
and (b) the shock acceleration efficiency and the accelerated CR distribution
functions as a function of the upstream fluid conditions and the shock Mach
number.

The two-fluid model provides the simplest way to include the CR effects
described above. Here the CRs are described as a fluid characterized by a γ-law
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equation of state such that CR energy and pressure relate as Ec = Pc/(γc − 1).
Only the parameter γc needs to be specified. The acceleration efficiency is
implicitly determined by the conservation equations Achterberg et al. (1984).
While useful and applied with some success in order to study individual shocks,
this approach may be too restrictive to study a general astrophysical source with
supersonic motions. Particles accelerated at shocks with different Mach number
will have different distribution functions and hence will define different local
values of γc. This means that the efficiency obtained at fixed value of γc is too
restrictive and, in fact, it can even lead to unphysical shock solutions Achterberg
et al. (1984); Malkov (1997). In addition, in this approach no information about
the particle distribution in momentum space is retained. Since the processes
determining both Σc as well as the evolution of Pc are strongly momentum
dependent, the above lack of information can lead to inaccurate estimates of the
RHS of Eq. (2-3).

To obviate such issues we propose an approach that, while allowing a fluid-
like description of the CR component, retains the essential information at the
kinetic level to avoid the above pitfalls. This is briefly described in the following.

2. A Scheme for Cosmic-Ray Hydrodynamics

In our approach we rewrite the system (1-5) in fully conservative form, so that
energy and momentum contain both the fluid and CR components, and the only
term on the RHS is due to radiative energy losses. The effects of CRs pressure
on the hydrodynamics are accounted for by a modified formulation of the fluxes.
Similarly, having specified the parameters defining the shock acceleration pro-
cess (item (b) above), the CR effects on the shock solution are accounted for
by a modified Riemann solver, even though the shock structure is not resolved.
The proposed Riemann solver works most easily when applied to the full shock
jump conditions, not to intermediate shock jumps created as a result of numer-
ical viscosity. We have therefore implemented it together with a simple shock
tracking scheme provided by Glimm’s method Colella (1982).

To cost-effectively retain information about the shape of the CR distribution
function, we divide momentum space into a few (∼ 10) log-spaced coarse bins
and assume that the distribution function f within each bin is a power-law in
momentum. For convenience, we store the volume integral of ‘f’ within each

bin, namely npj
=
∫ pj+1

2
p

j− 1
2

4πp2f(p)dp. A reconstruction scheme then allows us to

recover the piece-wise power-law distribution function from the set {npj
} Miniati

(2001). The sub-bin power-law model turns out an effective way to compensate
for the fewness of resolution elements available in momentum space.

2.1. Finite Difference Diffusion-Convection Equation

Integrating the diffusion-convection equation (5) multiplied by 4πp2 over each
bin we obtain an equation for the time evolution of each npj

. This equation can
be used to derive finite-volume scheme for npj

Miniati (2001)
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where the fluxes are time-averages evaluated at momentum and spatial cell in-
terfaces, respectively, and Jpj

is an additional term for the production rate of
CRs due to shock acceleration. The fluxes are defined as
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− 〈κ〉∇npj

, Fp = 4πp2f(p)
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)
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accounting for both spatial advection and diffusion (Fx) on the one hand, and
adiabatic effects, energy losses and diffusion in momentum space (Fp), on the
other. In Eq. (8) 〈κ〉 is the ∇f -weighted average of κ(p) in momentum volume.
The flux in momentum space at time t = n∆t is computed as Miniati (2001)
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where, in the first equation above, the distribution function is evaluated left or
right of the interface pj+1/2, depending on whether pu ≤ pj+1/2 or pu > pj+1/2,
respectively. The quantity pu defined by the characteristic (second) equation
represents the momentum that particle must have at time t, in order to have
a momentum pj+1/2 an interval ∆t later. Note that the diffusive term in the
above expression for the flux can be retained only as long as diffusion is slow,
i.e. (pj+1/2−pj−1/2)

2/Dp ≫ ∆t. Time centering of the flux in momentum space

(Fnp → F
n+ 1

2
p ) is obtained by time averaging between t and t + ∆t, as usually

done for nonstiff sources. Time centering is required because pu depends on the
time dependent fluid properties.

2.2. Spatial Fluxes and Modified Riemann Solver

In this and next subsection we ignore energy losses (except adiabatic ones), which
are addressed in Miniati (2001), and diffusion. Diffusion is naturally included
in our scheme (Eq. 8) and, depending on its stiffness, can be readily treated
with either implicit or explicit schemes available in the literature (e.g. Miniati
& Colella 2007). Instead, in the following we focus on reproducing the correct
CR modified shock structure, including the jump conditions and shock speed,
without explicitly resolving the diffusive scales of the CRs.

In order to compute the spatial fluxes, Fx, one needs to analyze the hy-
perbolic structure of the fluid+CR system. The quantities npj

are advected
passively, so it is sufficient to consider the system with primitive variables
(ρ, u, Pg, Pc). The system has four left/right eigenvectors (not specified here
but see, Miniati 2007) associated to the following eigenvalues: λ0 = u−cs, λ1 =

u, λ2 = u, λ3 = u + cs, where cs =
√

(γgPg + γcPc)/ρ is the modified sound
speed that accounts for the CR pressure. The corresponding characteristic equa-
tions include the usual relations for an ordinary gas but with gas pressure and
sound speed replaced by P = Pg+Pc and cs, respectively, and the additional re-
lation dPc/γcPc = dPg/γgPg describing the change of CR pressure as a function
of the gas pressure during an adiabatic process. In smooth flows this information
is sufficient to obtain the time averaged spatial fluxes. In fact, one can readily
apply a Godunov-type scheme, after including the above simple modifications,
to compute the intermediate states at cell interfaces which define the fluxes.
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Figure 1. Numerical (open circles) versus exact (solid line) solutions for
a left moving shock with Mach number 20 (left) and a shock tube problem
(right). Shocks are advanced with Glimm’s method and smooth flows with
Godunov’s method

When a shock is present, however, the Riemann solver procedure needs to
be modified. The first step in a Riemann solver is to compute the velocity, u∗,
and pressure, P ∗, of the central state separating the left and right states. The
central state depends on the speed of the nonlinear waves. When CR acceleration
affects the shock structure the Lagrangian speed of the nonlinear waves takes
the modified form Miniati (2007)
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where, ±, labels values upstream and downstream of the shock, respectively,
Cs =

√
γgρPg is the Lagrangian sound speed of an ordinary gas and, most im-

portantly, rp is the adiabatic compression of the fluid produced by the energetic
CR particles as they diffuse upstream of the shock Achterberg et al. (1984). Pro-
vided the shock acceleration efficiency as a function of the upstream conditions
and the shock Mach number, using Euler’s equation one obtains an implicit ex-

pression for the nonlinear wave speed, namely, W = W
[
P ∗, rp

(
W
Cg

)]
, which is

solved iteratively within the Riemann solver. In addition, the tangent slopes to
the wave curves in the P−u plane connecting the left and right states, which are
used to find P ∗, also need to be modified (see details in, Miniati 2007). These
modifications account for the changes in the shock speed and jump conditions
due to CR mediation, consistently with the assumed shock acceleration model.
The Riemann solution allows the calculation of the spatial fluxes and the energy
dissipated into CRs. The distribution function of shock accelerated particles
from the input model parameters then specifies the source term J in Eq. (7).

2.3. Numerical Tests

To illustrate the performance of our scheme in the following we present two tests.
In both cases the initial conditions consist of a Riemann problem with constant
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left and right states specified by the following quantities (ρ, u, Pg, Pc, γc). We de-
liberately omit a description of the distribution function to focus on the thermo-
dynamic properties of the fluid. For simplicity the shock acceleration is assumed
independent of the upstream condition and dependent solely on the shock Mach
number as, η(M) = 0.8[1− exp(M− 1.5)/5.77], where η is the fraction of total
momentum upstream of the shock that is converted into downstream CR pres-
sure. The first test consists of a strong shock moving to the left with left/right
initial states: (1.0, 20, 1.0, 0.3, 1.34) and (12.83,−3.81, 103.28, 512.73, 1.33), re-
spectively. The second test is a shock tube problem with left with left/right
initial states (1, 0, 1, 0, N/A) and (9, 0, 10, 6, 1.33), respectively. The results for
each test are shown in the left and right plots of Fig. (1), respectively. For each
plot the four panels show, from top to bottom, gas density, velocity, gas pressure
or total pressure, and CR pressure. In general the numerical solutions reproduce
the ‘exact’ solutions very well, without oscillations or artifacts, even when the
CR pressure is comparable or significantly higher than the thermal pressure.
Note that in this demonstration we have neglected all losses except adiabatic
ones for clarity. As a result, for a lagrangian fluid elements the CR distribu-
tion function has a constant slope determined by the fluid element position with
respect to the contact discontinuity.

3. Conclusions

We have presented a one dimensional method to follow efficiently the evolu-
tion of the CR distribution function in large scale astrophysical systems, and
to include the dynamical effects of CRs both in smooth flows and at shocks.
Multidimensional extension of the current scheme will be part of future work.
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