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Abstract. Solar-B observations are going to provide rich information which
will enable a better understanding of magnetic reconnection in the solar atmo-
sphere. So far different models exist of reconnection in three dimensions with
different consequences for flare and CME triggering as well as for solar parti-
cle acceleration. Most of these models are qualitative, cartoon-like, i.e. they can
neither be verified nor can they be falsified quantitatively by observations. Nu-
merical simulation approaches are necessary to describe the nonlinear, nonlocal
and ranging over extremely different scales physical processes, which are not
directly observable. We discuss key aspects which have to be taken into account
in order to develop appropriate forward simulation models which are able to
specify the nature of solar reconnection by a direct comparison with Solar-B
observations. As a starting point we discuss how to use the vector magnetic field
information provided by SOT as an initial condition for the simulations. We fur-
ther consider the use of the time series of SOT vector magnetic field observations
to derive appropriate boundary conditions simulation models able to describe
the energy input into the chromosphere and corona. Further, an appropriate
coupled plasma – neutral gas model is suggested, able to describe the conse-
quences of the sub-photospheric energy input for reconnection causing electron
acceleration, indirectly observable by XRT, and plasma heating, observable by
EIS. Since location, triggering conditions and strength of reconnection depend
on microscopic dissipation processes, we shortly review the state that appropri-
ate transport coefficients for solar coronal conditions. Finally, we show by an
example that different resistivity models might reveal completely different loca-
tions and size of three-dimensional reconnection and the corresponding electric
fields in the solar corona, so that they can be verified by solar B-observations.

1. Introduction

The four main objectives of the Solar-B mission are the most striking open
questions in solar physics: creation and destruction of the Sun’s magnetic field,
modulation of the solar luminosity, conversion of solar magnetic energy into UV
and X-ray radiation and the causes of solar eruptions, which all address in one
or another way magnetic reconnection (Tsuneta, 1996; Shibata, 1998). Indeed,
solar magnetic reconnection is not well understood, yet. Open is the reason
for its initiation (triggering condition), its location, its structure and dynamics
in three dimensions, its role in solar eruptions, i.e. whether it is primary or
secondary, how fast it can become and how much energy is converted into particle
acceleration, plasma flow energy and heating. The Solar-B mission is well suited
to improve our understanding of reconnection in the solar corona. Since existing
forward models are not sufficiently quantitative to allow their direct verification
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by observations, better models have to be developed for taking out most from
Solar-B observations.

The lowest order approximation to model the magnetic fields of the corona
is a formal mathematical extrapolation of the photospheric magnetic field (Saku-
rai, 1989). Such approach assumes that the coronal magnetic field is force-free

(rot ~B = α~j) or even current-free (potential field approximation, rot ~B = 0). Ob-
viously, this does not allow, in principle, to consider a dissipative physical process
like reconnection and to address the open questions its about cause, nature and
consequences. The question arises, which more appropriate modelling approach
should one take? The global change of magnetic connectivity as well as flares and
CME ejections require a large scale treatment, a fluid approach. Also, one wants
to understand the physics of the corona in its interaction with the chromosphere
and the photosphere. In contrast to the chromosphere the coronal plasma is to a
large extent an ideally conducting fluid. A quantitative measure for the plasma
idealness versus resistivity is the magnetic Reynolds number Rm = µ0 L v/η.
With the vacuum magnetic permeability µ0 = 4π 10−7 Vs/Am being a constant,
the magnetic Reynolds number depends on the characteristic size of the region
L, the characteristic plasma velocity v and its electric resistivity η. For a typical
flare size L = 107 m, a typical flow velocity 1 km/s and a collisional resistivity

η⊥ ∼= 10−4lnΛ T
−3/2
e Ωm (Spitzer, 1956) (where lnΛ is the Coulomb-logarithm

-usually 20 − 30- and Te the electron temperature in eV ) for a Te = 100 eV
= 106 K hot coronal plasma, i.e. for η = 10−7 Ωm, the Reynolds number is of
the order of 1010! This means that the flare energy release cannot be explained
by Spitzer-type collisional resistivity. Magnetic reconnection is able to enhance
the release of magnetic and plasma flow energy taken from large regions through
a small non-ideal plasma region (Priest & Forbes, 2000). Reconnection is charac-
terized by a change of the magnetic connectivity through such non-ideal plasma
region (Axford, 1984). Hence, for reconnection it is sufficient if the magnetic
Reynolds number drops just locally to small values of the order of unity to allow
the conversion of magnetic field and slow large scale plasma energy to a buildup
of electric fields, fast, Alfvénic, plasma flows, heating and particle acceleration
to high energies. Reconnection, therefore, needs local dissipation due to small-
scale, kinetic processes exceeding the weak Spitzer-type collisional dissipation,
to cause large scale restructuring and energy release in the corona.

Since the plasma flow velocity which enters Rm is known from observa-
tion there are two ways to reach small local magnetic Reynolds numbers: small
non-ideal plasma regions (small L) and a large effective resistivity ηeff , exceed-
ing the collisional Spitzer value by orders of magnitude. While in the dense
chromospheric plasma the resistivity is large due to additional collisional terms,
altogether combined in the so called ”Cowling resistivity” (Cowling, 1957), in
the corona only collective wave-particle interaction phenomena may enhance the
resistivity to sufficiently large values (Priest, 1982), which have to be derived
from microscopic theories (see, e.g., Büchner & Elkina, 2006a).

Since, therefore, reconnection is an essentially nonlocal, multi-scale process
combining kinetic and fluid scales, numerical simulation is necessary to derive
verifiable quantitative consequences of the resistivity models in order to test
them on Solar-B data. Yokoyama & Shibata, (1994), for example, considered
the consequence of different macroscopic resistivity models of the microphysical
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dissipation mechanisms. They fluid-simulated a two-dimensional magnetohydro-
dynamic (MHD) buoyancy instability applying alternatively either an uniform
resistivity η = const. = ηo or a resistivity, switched on after the relative drift
of ions and electrons, i.e. the current carrier velocity uccv, calculated as current
density j, divided by the charge density ρ, i.e. as uccv = j/ρe, exceeds a certain
threshold ucrit. They found that already in two dimensions the reconnection rate
is not uniquely determined by the driving process, but that it strongly depends
on the resistivity model taken near the (2D) neutral point. For example, in their
calculations the reconnection rate increased with an increasing threshold for the
switch-on of the resistivity. Another investigation of the influence of macroscopic
resistivity models on 2D reconnection was carried out by Roussev et al., (2002).
They confirmed that the threshold, at which resistivity switches on, influences
the dynamics of reconnection: higher threshold values provide a localized on-off
effect of patchy diffusion. They also found that for a given resistivity value the
amount of Joule heating is larger for smaller threshold values.

The properties of reconnection geometry in the real three-dimensional solar
atmosphere has still to be determined, e.g., whether it contains a magnetic null
point or, if not, how finite-B reconnection looks like and where it is located and
how it depends on the macroscopic resistivity model (see, e.g., Büchner, 2006).
In order to find out by forward modelling, where, when and how reconnection
takes place in the solar corona, one should start with the fact that the energy
dissipated by reconnection in the solar atmosphere originates from the interior
of the Sun. Hence, it has to be transported through the photosphere, the natural
boundary for coronal simulation models. SOT onboard Solar-B provides the full
vector magnetic field information for the photosphere, with a diffraction limited
resolution of 0.25” (or 175 km on the Sun), a sensitivity of 1-5 G for the lon-
gitudinal and of 30-50 G for the transverse magnetic field component. It allows
to follow the dynamical evolution of the magnetic field, of the photospheric cur-
rents and plasma motion with a time resolution of 5 minutes. The detectable
change of the magnetic energy of an active regions will be about 1030 erg. SOT
observations provide an invaluable input information for the forward modelling
of coronal heating processes, the triggering of solar eruptions and the particle
acceleration to high energies. For the latter, as for reconnection the microscopic
buildup and balancing of electric fields has to be taken into account. Reconnec-
tion leads to particle acceleration, indirectly observable by XRT. A combination
of the microphysics of electric field generation with the macrophysics of plasma
flows is also necessary to model solar reconnection and to derive the energy con-
version into heat, causing EUV radiation observable by EIS. Hence, multi-scale
coupling models have to be developed in which the small scale dissipation pro-
cesses are coupled to the macroscopic, large scale plasma flows in a consistent
way. First of all, however, one should start with an equilibrium based on the
observed photospheric magnetic field. In section 2. we discuss the construction
of initial equilibria consistent with SOT observations. Further one has to im-
pose appropriate boundary conditions consistent with the photospheric plasma
motion. In section 3. we first review existing methods for deriving the photo-
spheric plasma motion from magnetic field observations and then discuss how
to implement appropriate boundary condition for the simulation. In section 4.
we provide a set of fluid equations describing a plasma-neutral gas model of
chromosphere and corona. The dissipation arises at microscopic scales and has



410 Büchner

to be treated kinetically. In section 5. we consider the most appropriate macro-
scopic resistivity models based on latest kinetic simulation results necessary to
correctly treat the microphysics of collisionless coronal plasmas. In section 6.
we give an example of combining the microscopic and macroscopic aspects of
coronal reconnection in a forward model of the location and shape of the recon-
nection region in dependence on different resistivity models. We demonstrate
the crucial role which the resistivity model plays in 3D reconnection for locating
reconnection. Finally, in section 7. we draw conclusions about the next steps to
be gone in developing forward models in order to utilize best all the brilliant
opportunities, Solar-B will provide.

2. Initial Conditions

Since in the corona β = 8πnkBT/B
2 ≪ 1, i.e. since the kinetic pressure is much

smaller than the magnetic pressure, the initial magnetic field configuration can
be obtained independent on the plasma distribution. The most reliable infor-
mation for constructing an initial magnetic field close to reality is the observed
photospheric magnetic field. Assuming force-free conditions one can solve the
resulting elliptic partial differential equation for the magnetic field or its poten-
tials by combining the photospheric field information with appropriate boundary
conditions. One can start, e.g. with the most accurately determined line-of-sight
component of the photospheric magnetic field, at least, if no information about
the photospheric currents (i.e. no vector magnetic field information) is available.
In such current-free, potential approach one finds a lowest energy state of the
coronal magnetic field, neglecting force-free parallel currents and, of course, the
cross-field current sheets recently detected (Solanki et al., 2003).

Other than, e.g., the Seehafer, (1978) solution for a force-free field the com-
patibility with magnetohydrodynamic (MHD) boundary conditions requires a
well defined local symmetry of the boundary conditions for the magnetic field,
in particular, the symmetry conditions for the magnetic field and for the current
density have to be the same. We currently derived a way how this can be done
in a compatible with MHD boundary conditions (Büchner et al., 2004a, 2005;
Otto et al., 2006). There we derived an extrapolation scheme, compatible with
the requirements of MHD. As the one of Seehafer, (1978) our scheme is based
on a Fourier expansion. However, we enforce periodicity by choosing an MHD-
compatible symmetry condition for Bz at the x and y boundaries of the system
with a periodic domain −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly four times as large as the
original region (0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly). The larger region is fully periodic by
construction and the total magnetic flux through it is balanced to a high degree.

Due to the high-plasma-β state of the chromosphere and corona one is free
to ”fill” the initial magnetic field configuration with plasma, just in accordance
with requirements for an equilibrium between the gravitational force density
and kinetic plasma pressure. As for the temperature stratification one can use
the most appropriate one, e.g. according to VAL (Vernazza et al., 1981). The
resulting initial distribution of the plasma density in thermal equilibrium with
the solar gravity assuming g = const. = 275m/s2 (since the pressure scale height
is of the order of or even larger than the height of the simulated part of the
corona), is shown in Figure 1 from Büchner et al., (2006). The Figure depicts
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Figure 1. Initial height distri-
bution of density (solid line), tem-
perature (dotted line) and ther-
mal pressure (dashed line). The
gravitation is balanced by the
thermal pressure. From Büchner
et al. (2006).

Figure 2. Vlasov-code simu-
lated evolution of the electric field
fluctuation energy at different
stages of the linear (I) and nonlin-
ear (II-IV) ion-acoustic current-
driven instability. From Büchner
& Elkina (2006b)

the initial distribution of the density (solid line) and of the thermal pressure
(dashed line) which balances the solar gravity force density and the prescribed
radially stratified temperature distribution (dotted line) here of the VAL model,
but which also can be taken from observations.

3. Boundary Conditions

The energy which is released in the corona enters the solar atmosphere through
the photosphere. In a simulation model the energy input from below the pho-
tosphere can be taken into account best by forcing the plasma in the chromo-
sphere to move in accordance with the observed photospheric plasma motion.
In a simulation model this idea can be implemented, e.g., by imposing a time-
dependent motion of the chromospheric neutral gas derived from the observed
plasma motion in and through the photosphere. Since in the chromosphere neu-
tral gas and plasma are strongly coupled this way the observed photospheric
plasma motion can elegantly be transferred, via plasma-neutral gas coupling,
to the chromosphere. To implement this idea one has first to determine the
photospheric plasma motion. A direct measurement is difficult since the typi-
cal flow velocities of the order of 1 km/s. Possibly emerging and submerging
magnetic fluxes are too moving to slowly (Harvey et al., 1999) to be visible in
Dopplergrams. Fortunately, in the photosphere plasma and magnetic flux are
closely related due to the large magnetic Reynolds number (strong collisional
resistivity). Hence, the photospheric plasma velocity field could be estimated,
in principle, from the evolution of the magnetic fields. Several methods have
been suggested to calculate the photospheric plasma motion from a sequence of
photospheric magnetograms, e.g. by November & Simon, (1988), by Kusano et
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al., (2002), by Welsch et al., (2004), by Longcope, (2004) and by Georgoulis &
LaBonte, (2004).

The simplest is a local correlation tracking revealing a technique given the
same name - LCT (November & Simon, 1988). The idea of the LCT method is
to find the displacement that maximizes the spatially localized cross-correlation
between two subsequently obtained magnetograms separated by a sampling time
delay τ that is smaller than the lifetime of tracers in the scene. This method
can be applied, if only the line-of-sight component of the photospheric magnetic
field is available. Demoulin & Berger, (2003) have shown, however that local
correlation tracking cannot distinguish a real horizontal displacement from ap-
parent ones due to up- and downward plasma motion along inclined magnetic
field lines. Based on geometrical arguments with Bh denoting the horizontal, the
in-photosphere-component and and Bv the vertical component of the magnetic
field, directed perpendicular to the photosphere, one can correct the LCT result
using the relation

~uh = ~vh − vv

Bv

~Bh, (1)

where vv and vh denote the vertical and the horizontal components of the ”real”
velocity, while uh is the horizontal component of the apparent velocity, in this
case the LCT velocity, respectively.

If the full photospheric vector magnetic field information is available better
results can be obtained by taking into account that the plasma motion should
be consistent with the vertical component of the induction equation (Kusano
et al., 2002; Welsch et al., 2004). An alternative technique is the minimum
energy fit suggested by Dana Longcope, (2004). His method also uses the vertical
component of the induction equation, but selects the solution by minimizing an
energy functional. A comparison of the different methods applied to an active
region on the sun is given in a companion paper published in this volume (Santos
et al., 2006).

Using the this way obtained information about the photospheric plasma flow
one can construct the boundary condition for the Z = 0 plane. For the X and
Y boundaries one should implement MHD compatible line symmetric boundary
conditions with respect to the center of each boundary plane as for the magnetic
fields. For the upper boundary Z =max one should consider asymptotic boundary
conditions with vanishing fields and flows.

In practice there are situations, where just a horizontal motion of the pho-
tospheric plasma is observed, i.e. without emerging or submerging fluxes. In
this case one can impose a linear combination of neutral gas vortices chosen in
accordance with the observed photospheric plasma motion as a boundary con-
dition. If the velocity fields are chosen to satisfy ∇ · un = 0, the density will
be conserved (incompressible neutral gas forcing). In this case the velocity field
contained in the x, y plane is represented by a potential: un = ∇× (Uez). The
contour lines of the function U are the streamlines of the flow, which should
be taken from the observations. Although such neutral gas motion is specified
throughout the whole simulation domain it is effective only where the collisional
coupling between gas and plasma is sufficiently efficient, i.e. mainly in the chro-
mosphere. The tangential velocity at the lower boundary is specified as defined
by the neutral motion whose normal component is set to zero. In the example,
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given in section section 6., this type of boundary condition is implemented after
a rotation of a major magnetic flux concentration was observed below an EUV
bright point by Brown et al., (2001).

4. Model Equations

In order to describe the coupling between photosphere and corona one has to
take into account that the chromospheric plasma is denser and that the coro-
nal plasma is hotter (see Figure 1). The chromosphere is, therefore, Spitzer-type
collision dominated, and, in addition, in permanent interaction with the chromo-
spheric neutral gas via charge exchange, ionization and recombination. Hence,
in the chromosphere one has to consider the friction between plasma and neu-
tral gas as well as the thermal contact between the two. The corresponding
magnetohydrodynamic set of equations is given by:

∂ρ

∂t
= −∇ · ρu − µ(ρ− ρn) (2)

∂ρu

∂t
= −∇ · ρuu −∇p+ j × B − νρ(u − un) − gρ (3)

= −∇ ·
[

ρuu +

(

p+
B2

2µn

)

1 − BB

µn

]

− νρ(u − un) − gρ (4)

∂B

∂t
= ∇× (u × B − ηj) (5)

∂p

∂t
= −∇ · pu − (γ − 1)p∇ · u + (γ − 1)S (6)

∇× B = µ0j (7)

The independent variables of equations (2) - (7) are the plasma mass density
ρ = n(Mi + me), where n is the number density of electrons and ions in a
quasi-neutral plasma, the subscripts e and i stand for electrons and ions, respec-
tively, where ions are mainly protons. Other independent macroscopic variables
to be considered are the neutral gas mass density ρn, the plasma flow veloc-
ity u = ui + ue and the neutral gas flow velocity un. To the lowest order it
is appropriate to consider an isothermal plasma with equal electron and ion
temperatures (Te = Ti = T ). Hence, the kinetic plasma pressure is given by
p = pi+pe = 2nkBT and the electric current density as j = en(ui−ue). Another
important simulation variable is the magnetic field B while the electric field can
be expressed via the Ohm’s law as E = −u×B+ηj assuming that a macroscopic
resistivity η exists. A combination of interactions via ionization, recombination
and friction between plasma and neutral gas can be parameterized via general
rates ν and µ. Assuming adiabaticity the polytropic index becomes γ = 5/3.
For the gravitational acceleration one can use the surface value g = 275m/s2 as
long as the pressure scale height is of the order of or even larger than the height
of the simulated part of the corona. The energy equation (6), which closes the
set of fluid equations, contains a source (and loss) function S. In dependence on
the scope and purpose of the model one can contain some or all of the following
terms:
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S = ηj2 − 2κTnkB(T − Tn) −∇‖ · q‖ − Lr (8)

The first term in expression (8) describes the Joule heating, characterized by the
resistivity η, the second term is responsible for the thermal exchange between
neutrals and plasma, parameterized by the heat conduction coefficient κT , the
third term describes (parallel) heat conduction q = κ‖∇‖T and the fourth term
(Lr) quantifies the radiation losses. The factor two in front of the plasma-neutral
heat exchange term arises from the assumption of equal electron and ion tem-
peratures and from the assumption of equal exchange rates κTe = κT i = κT .
Since electron heat conduction exceeds the ion heat conduction by an order of
magnitude one can neglect the latter to the lowest order, considering basically
the electron heat conduction. As a result there is no factor two in front of the
heat conduction term. The strongest heat conduction takes place parallel to the
magnetic field. For the parallel electron thermal conductivity κ‖ it is appropri-

ate to consider the classical Spitzer-value 1.8 · 10−10T 5/2(ln Λ)−1 Wm−1K−1.
With a Coulomb logarithm lnΛ ≈ 20 for typical solar temperatures one ob-
tains κ‖ ≈ 10−11T 5/2 Wm−1K−1. For typical coronal temperatures the radi-
ation losses Lr can be parameterized as nnnQr (T ) for which the temperature
dependence Qr (T ) was evaluated by a number of authors. The function Qr,
graphed, e.g. in (see, e.g. Priest, 1982, page 88, Fig. 2.2.), has a maximum
around T = 105 K and a minimum near 107 K. An analytic approximation is
Q (T ) = χTα Wm3, piecewise approximated by values of α and χ, which can
be found in the literature (see, e.g. Priest, 1982, pp 88–89). In the chromosphere
plasma and neutral gas are coupled by collisions, causing friction and energy
exchange, but also by ionization of the neutrals and recombination of ions. The
main role of these interactions is to maintain a strong coupling between plasma
and the neutral gas in the chromosphere. In the transition region to the corona
this interaction should vanish. To meet this requirement the exact values of the
rates µ for the mass exchange and ν for the momentum exchange do not mat-
ter as long as they are sufficiently large compared to the characteristic time
of changes, i.e. as long as ν · τAo ≫ 1, where τAo = L0/vAo is a characteris-
tic Alfvén transit time for a typical length scale L0. The ion neutral collision
frequency is νin = nnσnvth, where the cross-section σn depends on the type
of the collisions and of the colliding particles. For elastic momentum exchange
one can take assume a cross section for the neutral gas atoms σn ≈ 10−19 m2.
Assuming a coronal number density n ≈ ·1015 m−3, a magnetic field strength
B0 = 1G = 10−4T and a normalization scale length of L0 = 500 km one finds
ν ·τAo ≪ 1, i.e. there is practically no momentum transfer with the neutrals in the
corona. In the much denser chromosphere ν ·τAo ≫ 1 leads to as strong coupling
between the neutral gas and the plasma. Realistic values for the electron-ion
collision rates νei are about 107 s−1 in the chromosphere and νei ≈ 103 s−1 in
the lower corona.

5. Anomalous Resistivity

The correct macroscopic appearance of the microscopic field-particle momentum
exchange, limiting the growth of currents and magnetic fields (cf. equation (5)
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) as well as the current induced heating (cf. equation 8) are concerned leads
beyond the scope of a fluid theory. Traditionally the gap between the detailed,
kinetic effect of current dissipation and its macroscopic consequences is closed
by ad hoc models. One possible assumption (see, e.g., Neukirch et al., 1997) is a
current density dependent resistivity with a switch-on current density threshold
jcrit. As one can see in expression (9) in such model only currents, exceeding
jcrit cause resistivity. For larger current densities the resistivity is considered to
increase quadratically with the excess current density. Unfortunately, neither a
current-density dependent threshold nor growing with increasing current densi-
ties resistivity is justified by any microscopic theory of resistivity. Also, as we
will demonstrate in section 6.) such model indicates wrong locations of finite
resistivity and, therefore, finite-B-reconnection in the real, three-dimensional
world.

η =

{

0 if |j| < jcrit,

η0

(

|j|
jcrit

− 1
)2

if |j| ≥ jcrit.

(9)

η =

{

0 if |uccv| < ucrit,

η0

(

|uccv |
ucrit

− 1
)

if |uccv| ≥ ucrit.

(10)
Instead of a current density threshold, microscopic theories of anomalously

enhanced collisionless resistivity usually indicate that the average particle drift
velocity, responsible for the current flow, does control the switch on of an en-
hanced net momentum exchange between the current carriers and the self-
generated plasma turbulence. In this sense Yokoyama & Shibata, (1994) (see
also Magara & Shibata, 1997) used a resistivity model as given by equation (10)
to investigate the dependence of the resistivity on macroscopic, fluid param-
eters. Without any microscopic theoretical evidence they (see equation (10) )
also assume that the resistivity further increases with a growing current carrier
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velocity. Somov & Oreshina, (2000) adopted the empirical result of laboratory
experiments of de Kluiver, et al. (1991) to assume a dependence of the anoma-
lous resistivity on the electric field following η = 10η0E/EDr, where EDr is the
Dreicer runaway electric field.

But what dependence of η on the macroscopic plasma parameters is jus-
tified best by the a microscopic theory? Since the coronal plasma-β is small
(for usual coronal parameters like B = 10−3 T and n = 1015m−3 one finds β ≈
0.03), i.e. electrostatic instabilities are possible candidates. As far as the coro-
nal plasma parameters are concerned SUMER observations onboard the SoHO
mission have shown that the electron temperatures in the corona are usually
slightly less than 106K while the ion temperatures exceed 106K, reaching up
to 107K. This excludes the generation of the ion-acoustic instability which re-
quires Te ≫ Ti. Hence, the current carrier velocities must exceed the electron
thermal velocity to excite the fluid-type electrostatic Buneman instability. From
the microscopic electron momentum balance equation follows, after averaging
the individual momentum exchange processes over appropriate temporary and
spatial scales, a macroscopic resistivity, which can be used in an Ohm’s law. The
resulting irreversible momentum transfer away from the electrons can be param-
eterized by an effective ”collision rate” νeff , which reveals a parameterization
of the effective resistivity (Büchner & Elkina, 2006a):

ηeff =
νeff

ǫ0ω2
pe

(11)

where ωpe =
√

ne2/ǫ0me is the plasma frequency with ǫ0 = 1/µoc
2 being the

vacuum electric permeability. For the effective ”collision rate” due to a current
instability O. Buneman heuristically estimated νeff ≈ ωpe/2π (Buneman, 1958).
However, there no theoretical investigation could justify such a large effective
collision frequency. Also, it was found that a reactive Buneman-type instabil-
ity quenches itself within τ ∼= 10/ωpe, i.e. within a few electron plasma periods
(Treumann, 2001). Hence the fluid-like reactive Buneman instability could at
most pre-heat of electrons enabling a follow-up ion-acoustic instability. How-
ever, as we currently have shown by means of Vlasov-code simulations, this does
not happen in the solar corona. Instead, the Buneman instability continues non-
linearly, enhancing the level of turbulence after an electron trapping stage via ion
scale structure formation up to the formation of double layer structures (Büchner
& Elkina, 2006b). Figure 2 taken from that paper depicts the evolution of the
energy of the electric field fluctuations in the course of an ion-acoustic current-
driven instability from the linear stage (I) to electron- and ion trapping as well as
to double layer formation (stage IV, see, e.g., Büchner & Elkina, (2006b)). The
resulting effective collision rates are depicted in Figure 3 for the different con-
tributions to the electron momentum exchange, i.e. due to interaction with the
self-generated fields (νeff , dashed line), due to the electron inertia and pressure
gradient effects which all contribute to the electron momentum balance (Ohm’s
law, see, e.g., Büchner & Elkina, (2006b)). As far as the energy flow is concerned
Figure 4 shows the effective exchange rates, parameterizing the energy transfer
to the electric fluctuations (solid line), the ion- (dash-dotted line) and electron
heating (dashed line) in the course of the linear and nonlinear stages of the
instability evolution (Büchner & Elkina, 2006b). As one can see the efficient en-
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ergy exchange rate coincides well with the momentum exchange rate so that the
resulting resistivity obtained via νeff using equation (11) can be used in both,
momentum and energy equations (5) and (8), respectively. With νeff ≈ 0.5ωpi

(where ωpi =
√

ne2/ǫ0Mi is the ion plasma frequency, Büchner & Elkina, from
2006b) one obtains ηeff ≈ 1 Ωm. This is 107 larger than the collisional resistiv-
ity of the same coronal plasma (see section 1.)! Hence, Rm ≈ 1 can be reached,
therefore, already for dissipation regions scaling as L ≈ ηeff/µ0v ≈ 250m.

On the other hand, the critical threshold value ucrit ≈ vte for the current
carrier drift velocity, necessary to excite an ion-acoustic instability in nearly
isothermal plasmas requires magnetic field gradient scales l ≈ B/µ0nevte of the
order of 10m for solar parameters (B = 10−2 T, n = 1015m−3, T = 106K). The
required magnetic field gradient scale becomes larger only in stronger magnetic
fields, reaching 100m only in a B = 10−1 T , i.e. in a kG field. Another possi-
bility is the excitation of lower-hybrid-drift or even drift-cyclotron instabilities.
The LHD instability requires a weaker gradient scale than the ion-acoustic in-
stability, of the order of 13(Mi/me)

1/4m in a B = 10−2 T solar magnetic field.
In weaker magnetic fields the length scale increases indirectly proportional to
the field strength. For the electromagnetic ion cyclotron drift instability the gra-
dient length scale requirement is also weaker, 13(Mi/me)

1/2m, i.e. (Mi/me)
1/4

larger scale lengths (weaker gradients) are sufficient. Unfortunately, there is now
reliable result known yet for the nonlinear evolution of these instabilities for so-
lar coronal plasma conditions, i.e. neither the saturation amplitudes nor the
anomalous collision rates are determined. There is hope that multi-dimensional
kinetic theories and simulations, still to be developed, will reveal suffiently large
amounts of anomalous resistivity resulting from lower-threshold instabilities like,
e.g., the lower hybrid drift instability, or even electromagnetic instabilities like
the drift-cyclotron instability.

6. Example

In two dimensions the influence of the macroscopic resistivity model on recon-
nection has been investigated, e.g., by Yokoyama & Shibata, (1994), Magara &
Shibata, (1997) and Roussev et al., (2002). In contrast to, e.g. (Neukirch et al.,
1997), these authors parameterized the resistivity in accordance with the current
carrier velocity ucc = j/ρe (see equation (10) ). The question is, whether these
results apply also to the real 3D reconnection in the solar corona, its triggering,
location and structure? Let us use the above described numerical simulation
setup to derive the location where anomalous resistivity and, therefore, recon-
nection is triggered for different resistivity models for a solar corona which is
modelled using observations of the photospheric magnetic field as initial and
boundary conditions as described above. For definiteness we consider the well
investigated case of a Π phase of an EUV bright point observed by Brown et
al., (2001). Deriving the initial and boundary conditions of the simulation from
MDI magnetograms according to the LCT method we obtained the boundary
conditions. We simulated the corona on a non-uniform grid with 107 points in
the vertical direction (z) , and 131× 131 grid points in the horizontal (periodic)
x and y directions, all including two ”ghost zones”, additional grid planes, al-
lowing the calculation of gradients on the boundaries. The simulation domain
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Figure 5. Isosurface of the re-
sulting parallel current density
jpar = 7.5jnorm embedded in
the coronal magnetic fields. From
Büchner et al. (2006).

Figure 6. Isosurface uccv|| =
0.2vA of the parallel current car-
rier velocity embedded in the
coronal magnetic fields. From
Büchner et al. (2006).

covers a volume of 32 × 32 × 15 Mm3 (excluding the ghost zones), providing
a non-equidistant vertical resolution between 150 km in the chromosphere and
transition region and 800 km in the corona. The horizontal resolution was 500
km. Let us test the influence of the switch-on conditions of the anomalous re-
sistivity for the two resistivity models - one based on a critical current density,
like the one given by equation (9) and another, based on a critical value of
the current carrier velocity as expressed by equation (10). In Figures 5 and 6
we depict the resulting isosurfaces of constant current densities (Figure 5) and
of constant current-carrier velocity components parallel to the magnetic field
uccv‖ = j/ρ = 0.2vA, where vA is the Alfvén-velocity. Note that both Figures
are obtained from the same data set. The difference in the isosurfaces demon-
strates that a resistivity model oriented at the current density would lead to
current dissipation preferentially in the chromosphere (see Figure 5). Contrary,
a microscopically justified current-carrier velocity based resistivity model would
trigger reconnection first of all in the transition region and above within a narrow
channel (see Figure 6).

7. Summary and Outlook

In order to maximize the output of Solar-B it is appropriate and timely to
develop quantitative forward models of the coupling between photosphere, chro-
mosphere and corona in order to verify 3D reconnection in the solar corona.
Unfortunately, most of the existing models are not yet directly based on obser-
vations. We have described requirements and steps toward the development of
genuine forward models based on time dependent photospheric magnetic field
observations as they will be provided by SOT onboard Solar-B. Still work has
to be done to complete the chain of steps necessary to simulate the EUV lu-
minosity of the heated coronal plasma, which will be observed by EIS, and to
obtain the X-ray intensity due to energetic particles, which will be observed via
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by XRT. Here, in this paper, we especially addressed magnetic reconnection in
the corona as a process releasing magnetic and plasma flow energy supplied from
below the photosphere. Theoretically open is still the question of a realistic con-
sideration of the coupling between not directly observable macroscopic variables
and kinetic processes. Our fluid investigations have shown that the macroscopic
resistivity model strongly influences the onset conditions, location and size of 3D
reconnection regions. A macroscopic parameterization of the microscopic trans-
port processes requires the determination of a threshold value for the current
carrier velocity or the magnetic field gradient scale as well as an anomalous ”col-
lision rate” parameterizing the resistivity. Currently performed high-resolution
Vlasov code investigations have shown that for solar conditions the threshold of
known collisionless current instabilities necessary to create a sufficient amount of
anomalous resistivity, still requires very strong gradients, i.e. filamented to small
scales structures in order to excite sufficiently large electric fields (Büchner &
Elkina, 2006a). However, future multidimensional considerations of obliquely
propagating plasma turbulence modes and the resulting phase space structuring
processes might help to resolve this dilemma.
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Otto, A., Büchner, J. & Nikutowski, B., 2006, Astron. Astrophys., subm.
Priest, E. R., 1982 ”Solar magneto-hydrodynamics”, D. Reidel Publishing Company,

Dordrecht, Holland, 590 pp
Priest, E. R. & Forbes, T. G., 2000, Magnetic Reconnection: MHD Theory and Appli-

cations (Cambridge University Press)
Roussev, I., Galsgaard, K., Judge P.G., 2002, Astron. Astrophys., 382, 639–649 doi:

10.1051/0004-6361:20011645
Sakurai, T., 1989, Space Sci. Rev., 51, 11-48
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