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ABSTRACT In this contribution basic techniques for producing
photometry from CCD frames are described. The topics covered include
methods for image center determination, routines for estimating the sky
background and the techniques of both aperture and Point-Spread-Function
fitting photometry. Procedures for transforming instrumental magnitudes to
those on a standard system are also discussed.

1. INTRODUCTION

The advent of high quantum efficiency linear panoramic detectors, such as CCDs,
has meant that many areas of Astronomy previously restricted only to those with
access to large telescopes, are now also open to those with access to more modest
facilities. This is particularly true in those areas of Astronomy that encompass
"photometry" in all its forms. For example, in the past, "faint" broadband
photometry meant measuring stars fainter than approximately 20th magnitude to
calibrate photographic plates. With a single channel photoelectric photometer, this
was a difficult task even with a large telescope (e.g. Sandage 1970). With a CCD
however, photometry accurate to better than 5% at magnitudes fainter than V=20 is
a relatively routine observation on 1m class telescopes (e.g. Sarajedini & Da Costa
1991) while with large telescopes at good sites, photometry accurate to better than
0.2 mag at levels fainter than V=24 is possible (e.g. Pritchet & van den Bergh
1988).

In this contribution the basic techniques for performing photometry on CCD
frames are set out in some detail. The frames are assumed to have been "fully
processed”, i.e., they are assumed to be bias-subtracted, flattened, cosmic-ray
cleaned, etc. It is also assumed that the scale of the CCD frame is such that there
are at least two pixels per full width at half maximum of an unresolved image, i.e.
the profiles of stars are not undersampled, though for many of the techniques
described, this is not a fundamental requirement. The next section outlines the
basic procedures of aperture photometry, while Point-Spread-Function fitting is
discussed in the following section. These techniques are discussed in the context
of photometry of stellar images but many of the techniques described, especially
those for aperture photometry, can be equally well applied to the photometry of
resolved objects such as galaxies. The analysis of CCD frames for surface

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



Basic Photometry Techniques 91

brightness information however, is a different topic that will not be covered here.
Davis et al. (1985), for example, can be consulted for information on the
techniques involved in that application of CCD photometry.

The photometry techniques described in the first part of this contribution
produce magnitudes that are on the "instrumental” system; i.e., that system which
results from the combination of the bandpass of the filter and the response of the
CCD used in the observations. However, in order to compare the observations
with those of others or with the predictions of theory, the instrumental magnitudes
must be transformed to a standard system. This process is discussed in the final
section.

2. APERTURE PHOTMETRY

In principle, measuring the brightness of a star on a CCD frame should be easy.
One merely needs to add up the counts in all the pixels that contain light from the
star, estimate the contribution to these pixels from the sky background using
nearby pixels, and then subtract the sky contribution to get the net signal from the
star. Since the summation of the light from the star is usually done within a
circular aperture, this technique is known as aperture photometry. However, in
practice, things are not this simple. In fact the derivation of a magnitude from a
stellar image on a CCD frame falls into three separate tasks: determining the center
of the stellar image, estimating the sky background and then calculating the "total"
amount of light from the star. Each of these steps is now discussed in more detail.

2.1 Image Center Determination
Accurate determination of the center of a stellar image in a pixel array is of

fundamental importance in the field of astrometry, and so not surprisingly,
astrometrists have developed a variety of methods to perform this task. However,
only two, relatively simple techniques will be discussed here. The first is the
marginal sum method (Auer & van Altena 1978, Stetson 1979).

In this method the first step is to extract from the CCD frame a subarray
centered on an initial guess for the center of the star. The size of the subarray
should be large enough so that it contains not only the star of interest but also
enough pixels to allow an estimation of the sky background. This means that the
subarray should be at least 5 times the full width at half maximum (hereafter
FWHM) of the image in size. From this subarray the x and y marginal sums, p(xj)
and p(y;) are formed by summing the pixel intensities down the columns and
across tJhe rows, respectively. That is, if Ij is the intensity at the pixel (x = x;,

y =Yj), then the marginal sums are:

px) =Y Tj and p(y)= 3 Ijj
J 1

If a one-dimensional function, such as a Gaussian, is then fit to each of these
marginal sums, an estimate of the image center in each coordinate will result. If the
star of interest is isolated (and not too faint else the marginal sums are strongly
affected by noise) then the center determined by this method will be perfectly
adequate for placing the center of the measurement aperture. But if the star has
nearby companions that fall within the subarray, then the derived center is likely to
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be invalid. This occurs because the four parameter (background level, center,
width and height) fit is rather easily biased by the presence of nearby companions.
Stetson (1979) describes a procedure for handling mild contamination but if the
stars of interest are not isolated, then it is prudent to adopt more sophisticated
centering algorithms than this simple technique.

More sophisticated centering methods make use of the fact that the star of
interest is presumably near the center of the subarray, hence it makes sense to
concentrate on those pixels nearest the center of the subarray. The simplest of
these methods is called the image centroiding method. This method proceeds as
follows. Suppose (xq, y0) is an initial guess at the image center. The first step is
to compute the x and y marginal sums once more, but this time instead of using the
whole subarray, the summation is confined to a box 2a x 2a in size. The box size
a is an adjustable parameter but best results are obtained if a is taken as
approximately the FWHM of the image. The marginal sums are thus:

a a
p(xi) = X Lj and p(yj)) = X Lj
Jza 1='a

The next step is to compute the mean intensities, X and Y , of each marginal:

a a
1 — 1
X =5 i;{;xm and Y =5 jg,ap(yj)

The final step is to compute the image centroid using only those points that lie
above the mean intensities. These are presumably the points that have the most
signal from the star. That is, a new estimate of the center of the stellar image is
given by:

a
D (PG - X

1_-d

X1 where the summation is for those i such that p(xj) = X
Z(p(xo X)
i=a
and
a
Z(P(Yj) - Y)yj
y1= Jz': where the summation is for those j such that p(y;) 2 >Y.
D (e -Y)
a

At this point it is important to check that the new estimate of the center (xj, y1) lies
within one pixel of the initial guess (xg, yg). If this is not the case then it is
necessary to repeat the process with (x1, y1) becoming the new initial guess (xq,
yo)- In other words, this centering method is an iterative process.
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This image centroiding method is computionally quite efficient and provides
accurate results provided the stars are neither very crowded (if there is another star
in the 2a x 2a box, the results are likely to be biased) nor too faint (large errors in
the image center can occur at low signal-to-noise). In either of these two cases,
Point-Spread-Function techniques, which are discussed below, are to be preferred.

2.2 Background Determination
The aim of this section is to endeavor to determine what the signal would be in the

aperture if the star of interest wasn't there! As noted by Stetson (1987) for
example, the background signal is made up of a number of contributions. First,
there are diffuse sources such as the terrestrial night sky emission, the zodiacal
light, etc, as well as contributions from scattered light inside the CCD camera and
dark signal from the CCD itself. There are also contributions from point sources -
other stars and galaxies, whether detected or not, near the star of interest.

To determine this background, the usual procedure is to look at the signal in
an annular region centered on the star. Use of an annulus, or indeed any
symmetrically placed region, ensures that at least to first order any gradient present
in the background should cancel out. Obviously, to avoid biasing the result, the
inner radius of the annulus should be sufficiently far from the center of the star that
its contribution to the signal in the background annulus is negligible. In practice,
this means an inner radius that is at least a factor of several times the FWMH of the
image. As regards the size of the annulus, ideally it should be sufficiently large
that it contains many hundreds of pixels, thereby ensuring that the uncertainty in
the background determined is small, at least in a statistical sense.

In the ideal case of a perfect detector and a completely isolated star, the
histogram of pixel intensities for the sky annulus; i.e. a plot of number of pixels
with intensity I against I for the pixels in the sky annulus, would have a Gaussian
form. In this case the appropriate value to take for the sky background is the mean
of the distribution. Further, in this ideal situation, the mean is the same as both the
median and the mode of the distribution, with the mode defined as the most
frequently occurring pixel intensity (i.e. the intensity at which the histogram
peaks). In the real world however, contributions from the wings of bright stars,
from faint stars and galaxies, from cosmic rays, etc, all act to add a positive skew
to the histogram of pixel intensities. In such a situation the histogram is no longer
symmetrical and the mean, median and the mode are no longer equal. Indeed, for a
skew in this sense, the mean is most affected by the contaminated pixels and the
mode least, with the median lying in between. So it is the mode of the distribution
that provides the best estimate of the true background signal. The pixel intensity
histogram is usually not actually calculated, instead the mode of the distribution is
estimated from the formula (e.g. Kendall & Stuart 1977, p. 40):

mode = 3 x median - 2 X mean

provided that the median is less than the mean. If this is not the case then the
contamination is probably small and the mean can be taken as the best estimate of
the sky background. It is also usual that any strongly deviant pixel intensities are
clipped iteratively before the final value is calculated. This scheme works as
follows: first, compute the mean, the median, the mode (via the "3-2" formula) and
the standard deviation for the intensities of the pixels in the sky annulus. Next,
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trim off from the (now sorted) distribution those pixels that lie further from the
median than some predetermined multiple of the standard deviation. The multiple
of the standard deviation used for the trimming can be a function of the number of
pixels left in the distribution (see, for example, the comments in the sky
determination code in Stetson's DAOPHOT program) but in most situations,
numbers like 2.5 or 3 produce reasonable results. The third step is to recompute
the mean, the median, the mode and the standard deviation once more, but this time
using the trimmed distribution. If the value of the mode has stabilized then the
process is complete; if not, continue iterating until it does.

2.3 Adding Up the Light
With the image center determined and an estimate of the background intensity

found, the total signal from the star inside an aperture of radius R is now easily
found. Expressed in magnitudes it is:

m=zpt - 2.5logl

where zpt is an arbitrary number used to produce reasonable output values for the
magnitudes (typical values are 23.5 or 25.0) and

I= % Ijj - npix isky

In this expression npix is the number of pixels in the aperture, igy is the
background sky value (per pixel) and the summation is carried out over those
pixels whose distance from the center of the image is less than R.

For small apertures, or equivalently for large pixels, it is necessary to be
concerned with the finite size of the detector pixels since, for example in the case
where there are only a dozen or so pixels contributing to the intensity sum, the
inclusion or exclusion of individual pixels can substantially affect the resulting
magnitude. Correcting for this effect is called allowing for partial pixels and there
are a number of different schemes that can be employed. Such schemes include the
simple expedient of assuming each pixel near the aperture boundary is made up of
4 sub-pixels, each with corresponding intensity 1/4 Ijj and including only those
sub-pixels within the aperture in the intensity sum, or the following scheme which
is that employed in the aperture photometry section of the DAOPHOT program
(Stetson 1987). In this scheme, if rjj is the distance of pixel (xj, yj) from the center
of the star, then if rjj <R - 0.5 include all I;j (pixel completely in aperture), or if
1ij > R + 0.5 exclude all Jjj (pixel completelly outside). For those pixels on the
boundary, i.e. those with R - 0.5 <rjj <R + 0.5, include a fraction
[(R + 0.5) - 1jj] of Ijj in the intensity sum. This corresponds to linearly weighting
the pixel intensity as it changes from being completely inside the aperture to
completely outside it. In any case, regardless of whether a partial pixel scheme is
employed or not, it is important to remember that a circular aperture is in practice
being approximated by an irregular polygon.

2.4 Choice of Aperture
The final question to be considered is what to choose for R, the size of the aperture

with which to measure the brightness of the star. The seemingly obvious answer
to this question is "the radius that contains all the light from the star" but in fact the
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answer is not this simple. For example, the profile of stellar image is much larger
than one would naively think (see, for example, King 1971) so that an aperture that
actually includes "all" the light would héwe to be very large. But for faint stars
such a large aperture is definitely not desirable, instead, as is now demonstrated,
the choice for the "optimum" aperture with which to measure a particular star
depends on its brightness.

That this is the case can be seen from a consideration of the errors involved
in aperture photometry (for simplicity only photon statistics and readout noise are
considered here; for a more detailed discussion see Newberry 1991). Assuming
that an aperture of radius R contains a total intensity Ig; from a star, and that the
CCD system gain is D electrons per ADU, then the number of photoelectrons
generated is just IgD. Photons follow Poisson statistics so that the standard
deviation associated with signal IgD photons is just (IgD)Y/2 photons or (IsyD)!/2
in ADU. The magnitude error is then:

m*om; = zpr - 2.5log (I = o(Iy)) or

) _1.09

if we also include the readout noise r (in electrons). As before Npix is the number
of pixels included in the aperture. This expression demonstrates that, provided
readout noise does not dominate, the error in the magnitude decreases with
increasing aperture size, since I increases with increasing aperture radius.
However, this is not true indefinitely because once the aperture includes "almost all
the light", dm; remains constant or actually increases due to the readout noise
contribution of the extra pixels.

Now there is a second source of noise that arises as follows: the sky
background igky is presumably well determined (at least in a statistical sense) since
it is derived from a large number of pixels. But the actual sky signal in the aperture
is subject to Poisson statistics in the same way as the object intensity. It is
straightforward to show that the error in the stellar magnitude from this source is
just:

_ 1.09 npixiska 1/2
dmy = Iy ( D )

Now npix is proportional to the square of the aperture radius, so it is evident that
dmy increases with increasing aperture size and this error is clearly minimized for
small apertures. The combined error is then:

1.09 . 1
om = @(IstD + npix(r2 + igkyD)) 12

Inspection of this equation indicates that there are two limiting cases:

a) "bright" stars for which IgD >> npi,‘(r2 + igkyD). In this situation large
apertures that contain "all" the light are acceptable.

b) "faint" stars for which IgtD does not dominate npjx 2 + iskyD). In this
situation, small apertures, which will not contain all the light, are to be preferred.
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In this context, it is also worth noting that Ist and isky are both proportional to the
integration time while r2 is fixed. Consequently, a single long integration is
preferable to a sum of shorter ones (cosmic ray frequency willing) since it
minimizes the effect of readout noise. Further, when igkyD > 12, the photometry
is said to be "sky noise dominated" but "readout noise dominated" when the
reverse is true. With broadband filters and modern CCDs only rarely are data
readout noise limited, but this is often not the case for narrow band imaging.

This difference in the choice of optimum aperture size depending on the
brightness of the star, leads naturally to the concept of aperture corrections.

2.5 Aperture Corrections

The subject of aperture corrections is discussed in some detail in Howell (1989)
and in Stetson (1990). As a result, the subject need be covered only briefly here.
The fundamental principle that underlies the concept is that, with a linear detector
such as a CCD and in the absence of distortion introduced by the camera optics, the
Point-Spread-Function, which can be defined as the two dimensional intensity
distribution produced at the detector by the image of an unresolved point source
such as a star, is the same for all stars regardless of their brightness and position
on the frame. That is, the images of bright and faint stars differ only by a scaling
ratio. Consequently, the fraction of the total in an aperture of a given size is the
same regardless of the brightness of the star. Clearly then, the best way to proceed
is to measure faint stars through a small aperture, thereby minimizing the errors,
and to measure bright stars through both small and large apertures. The difference
between the small and large aperture measures for the bright stars, called the
aperture correction, can then be subtracted (smaller magnitudes are brighter!) from
the small aperture measures for the faint stars to produce an effective large aperture
measurement.

This leaves one remaining question to be addressed: how large should the
"large" measurement aperture be? The answer to this question is that the aperture
has to be large enough that measurements made with it are independent of changes
in the seeing, telescope focus, etc, that can occur during a night's observing (see,
for example, Massey et al. 1989). This means that the aperture should have a
radius as large as 4 to 5 times the FWHM of the images. In practice an appropriate
approach is to measure the star through a number of apertures and plot a growth
curve, i.e. a plot of the measured magnitude as a function of aperture size. Itis
then relatively straightforward to define the asymptotic limit of such a curve, which
can then be taken as the "total" (or at least seeing independent) magnitude of the
star. For this procedure to work, the star has to be isolated but for moderately
crowded stars, a "total" magnitude can be derived by fitting the inner part of the
growth curve to that for an isolated star with similar FWHM. This procedure is
discussed in detail in Stetson (1990). In Figure 1 (normalized) growth curves for
stars observed in different seeing conditions are shown. These curves illustrate the
points discussed above - if seeing independent magnitudes accurate to the 0.01
mag level are desired, then relatively large apertures are needed.
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Fig. 1. Growth curves for stellar images in different seeing conditions,
normalized to the same asymptotic magnitude. A magnitude is the difference
between the aperture magnitude and the asymptotic value indicated by the
dot-dash line.

3. POINT SPREAD FUNCTION PHOTOMETRY

Aperture photometry as discussed in the previous section is adequate if the stars of
interest are neither too faint nor too crowded. However, it goes without saying
that much astronomy of interest is contained in situations where these criteria are
not met. In these cases, Point-Spread-Function (PSF) photometry is a more
appropriate technique. The basic principle of the technique is that all images on a
CCD frame have, again baring distortions introduced by the camera optics, the
same form and thus differ from one another only by a scaling ratio. Then fitting a
suitably defined PSF to a series of images will give relative magnitudes via the
equation:

m = zpt - 2.5 log (scaling ratio)

in which zpt is the magnitude assigned to the PSF.

Point-Spread-Function fitting programs can be grouped into two distinct
classes. The first, typified by Stetson's famous DAOPHOT program (Stetson
1987), uses the data itself to define an empirical PSF, while the second uses the
data to fix the parameters defining a model PSF. This latter approach is used in,
for example, Penny's STARMAN program (Penny & Dickens 1986) and in the
DoPHOT code (Mateo & Schecter 1989). There are advantages to both
approaches. The first makes the least assumptions about the shape of the PSF but
is only defined on the pixel grid. This can cause difficulties when interpolating the
PSF to a different center, especially if the images are nearly critically sampled (i.e.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



98 Da Costa

FWHM ~ 2 pixels). For this reason most empirical PSF codes store the PSF as
the sum of an analytic function (e.g. a Gaussian) and a look-up table of residuals
from the analytic fit. This reduces significantly the interpolation uncertainties. The
second approach has the advantage that the necessary integrations and
interpolations are more easily carried out, but of course has the disadvantage that
the chosen model profile may not be a good representation of the actual images.
The analytic functions used in these codes to model the profile of a stellar image are
usually either a Gaussian G(r), or a modified Lorentzian L(r), or a Moffat function
M(r), or occasionally the sum of a Gaussian and a Lorentzian. In their simplest
form these functions are (see Stetson ez al., 1990, for a more complete discussion):

. 202
Gaussian: G(r) «< e T7/20

) ) 1
Modified Lorentzian: L) o« ———
® 1+(r2/o2)B

1
Moffat: M(@) <« ——
) (1412/02)B

Both types of code work by fitting the PSF to data for an image inside a
fixed aperture, the so-called fitting radius, and maximizing some "goodness-of-fit"
criterion. The process is easily extended to fitting many images simultaneously
with the fit to NV stars requiring the determination of 3N parameters - the center (Xc,
y¢) and the scaling ratio for each image. Obviously this ability to fit many images
simultaneously allows photometry in much more crowded situations than is the
case for aperture photometry.

One final point that must not be overlooked is the requirement to bring the
relative magnitudes produced by the PSF-fitting code onto a proper instrumental
system. This is achieved by determining total magnitudes via aperture photometry
for the brightest least crowded stars on the frame. The (mean) difference between
the magnitude from PSF-fitting and the total magnitude for these stars then defines
the correction to be applied to all the PSF-fitting derived magnitudes to place them
on the instrumental system. In this procedure it is often necessary to first subtract
out neighboring stars from the vicinity of those used to define the PSF-to-total
correction. Fortunately, the very nature of the PSF-fitting process makes this easy
to do. However, it is usually the case that this PSF-to-total magnitude correction is
the largest source of systematic uncertainty in the whole photometry process.

4. TRANSFORMATION TO A STANDARD SYSTEM

While there are some applications of CCD photometry, such as time series analysis
of variable stars, that yield results from the instrumental magnitudes themselves, in
most situations it is necessary to transform the instrumental magnitudes onto a
standard system. Standard systems can be classified as broadband (filter widths ~
1000 A), intermediate-band (filter widths ~ few hundred A) or narrow-band (filter
widths ~ few tens of A). Examples of the first type are the widely used UBVRI
system or the Washington CMTT» system, while the Stromgren uvby, the Thuan-
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Gunn uvgriz, and the DDO system are all examples of intermediate-band systems.
Narrow-band filters are usually used for emission line (e.g. Ho or OIII) imaging
and flux determination. In all cases the standard systems are defined by sets of
standard stars, stars whose magnitudes and colors in the standard system are
known.

In principle the transformation of the observed instrumental magnitudes to a
standard system should be straightforward - one merely needs observations of a
few standard stars which can then be used to define a transformation to the
standard system. In practice however, the transformation process contains a
number of subtleties which must be kept in mind if precise answers are required.
Indeed it is a good idea to remember the following principle. Instrumental
magnitudes from a CCD frame can easily have internal precisions that are better
than 0.01 mag, but this fine internal precision will be wasted if the transformation
to the standard system introduces uncertainties at the 0.05 mag level! The moral
of this section then is, if you are interested in producing photometry on a standard
system (€.g. to compare your photometry with other data or with theoretical
predictions) then observing standards is just as important as observing program
objects. It is a waste of telescope time to compromise otherwise excellent data by
failing to acquire sufficient standard star observations!

For the same reasons it is important that the CCD/filter combination used,
which defines the instrument response, provide a good approximation to the
bandpasses of the standard system. While non-standard bandpasses (e.g. wider or
narrower filters, different central wavelengths, etc) may appear to produce
satisfactory transformations, the standard stars used to derive the transformations
are almost inevitably solar abundance dwarfs. But the spectral energy distributions
of the program objects, e.g. metal-poor giants, may be sufficiently different from
that of the standards that when combined with the non-standard bandpassess,
serious (and most likely undetected!) systematic differences from true standard
system magnitudes will result.

4.1 An Example: Transformation to the BVRI System
The (U)BVRI system is the most commonly used broadband photometric system

in Astronomy. The UBYV system originated with Johnson in the 1950s (Johnson
& Morgan 1951, Johnson 1955) and is based on a set of glass filters and a 1P21
photomultiplier. The system is inherently not a well defined system; for example
the long wavelength cutoff of the V bandpass was set by the falloff in the response
of the 1P21 photocathode and not by the filter. This creates an immediate difficulty
in reproducing the standard V bandpass for a red sensitive detector. Similarly, the
Cousins R, I system (Cousins 1976,1978), which incidentally is not the same as
the less well setup Johnson R, I system, is also not completely filter defined since
the red cutoff of the I bandpass is set by the response falloff of a cooled GaAs
photocathode.

The actual bandpasses of the BVRI system are tabulated in Bessell (1990)
and are illustrated graphically in Figure 2. It is important to remember that because
this is a broadband system, the effective wavelength of each bandpass depends
sensitively on the spectral energy distribution of the object under study. For
example, Bessell (1990) gives the following information:
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Aett (A)
Filter B Vv R 1
A0V 4363 5448 6407 7982
KO ITI 4520 5524 6535 8028

The largest changes in effective wavelength occur for the B band, because of the
large difference in spectral energy distribution at these wavelengths, and for the R
band because the long red tail in the R band response.

Normalized Response
0.6 0.8

0.4

0.2

o " i 1] . | 1 1 1
3000 4000 5000 6000 7000 8000 9000 10*

Wavelength (Angstroms)

Fig. 2. The bandpasses of the BVRI system from Bessell (1990).

4.2 Practicalities

Assuming that the prescriptions of Bessell (1990) or others have been followed in
the choice of filters, what then are the practical requirements for determining a
good transformation from the instrumental to the standard system? The first and
most obvious one is that it be a photometric night! It is hardly worth saying that
there is no point in observing standard stars if sky conditions are not cloud-free.
This is particularly relevant if the observing program is "all sky photometry", i.e.
the standard stars and the program objects are scattered all over the sky. The
second requirement is that the standard stars observed be those with accurate
standard system magnitudes. This means in practice choosing stars from the lists
such as those of Landolt (1973, 1983a,b), Graham (1982) and Menzies et al.
(1989, 1991). While this frequently means that at most only a few standards can
be observed per CCD frame, this should not be considered a disadvantage! Instead
it means that the instrumental magnitude can be well determined and that the
standard magnitude itself is likely to have been accurately measured. Indeed, itis
perhaps worth emphasizing that for those situations where accurate photometry on
a standard system is required, there is little to be gained from observing so-called
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"standards"” in relatively crowded fields such as those in globular clusters. Rarely
are the standard magnitudes of stars in these fields known to be accurately on the
standard system, or to be precise at the 0.01 mag level. Thirdly, regarding such
questions as the number of standards to be observed each night, how frequently
they should be observed, etc, the simplest answer is to let common sense be your
guide. Two standards observed at evening twilight are not likely to be enough to
calibrate an entire night’s observing! Reasonable requirements are the following:
(a) Observe perhaps 15 to 20 standard star fields throughout the night (not just at
the beginning and end!) with some reasonable fraction observed more than once.
This will guarantee enough observations to check for things like changes in
extinction during the night. (b) Observe standards with a wide range of colors,
preferably encompassing the likely color range of the program objects. This will
ensure that the color dependence of the transformations is well determined. (c)
Make sure that the range of zenith distances (or equivalently the range of
airmasses) over which the standards are observed exceeds the range in the program
object observations. This will minimize the possibility of errors resulting from
uncertainty in the atmospheric extinction.

If these (or similar) requirements are fulfilled, then a transformation to the
standard system can be derived (see Massey et al. 1989 or Da Costa 1990 for a
description) by writing equations (using V as an example, similar equations can be
written for B, R and I) of the following form:

Vstd = Vingt + a9 + a1(B-V)gd + 22X + a3X(B-V)gq + a4UT + ...
(other terms as required).

Here vipg is the instrumental magnitude (corrected for exposure time), X is the
airmass for the observation (for zenith distances zg < 60 degrees, X = sec (zg)) and
UT is the time of the observation. Vg4 and (B-V)gq are the standard system
magnitude and color of the star. Then with a series of standard star observations it
is possible to use a code (e.g. Stetson’s CCDCAL program or the GAUSSFIT
package (Jefferys et al. 1988)) to evaluate the coefficients aj and their significance.
The significances attached to the determined coefficients should not be ignored:
with these types of programs there is always the danger of overdetermining the
problem through having too many coefficients and too few standard star
observations to constrain them. Use only the minimum number of coefficients
required for a satisfactory fit! The terms are:

ag the zeropoint - a measure of the sensitivity of the CCD/telescope system in
this bandpass;

aj the color-term - a measure of how well the instrumental system
approximates the standard system. In most circumstances aj should be less than
0.1;

ag the first order extinction coefficient - this depends on the atmospheric
transmission and therefore varies from site to site and often from night to night.

a3 the second order extinction coefficient - this term is necessary, particularly
for B, because extinction varies rapidly across the bandpass so that combined with
the change in effective wavelength with spectral type, a variation in effective
extinction with spectral type results.

Other terms such as time or color-squared dependences are not usually
required but the residuals from the fit should always be investigated to confirm the

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



102 Da Costa

lack of correlation with time, airmass, color, magnitude, etc. In particular, a color-
squared dependence would only occur if the instrumental system is far from the
standard system.

It is reasonable to expect that the color-terms should remain constant during a
single run and perhaps from run to run if the same CCD and filters are used. The
zeropoints should also be stable within a run since there is no reason to expect the
overall sensitivity of the CCD/telescope system to change on a nightly basis. On
the other hand it is quite likely that the extinction will change from night to night as
atmospheric conditions vary, emphasizing the need for observations of standard
stars over a range of airmasses each night, in order to determine the extinction
correctly. Note that this approach of an assumed stable instrument and nightly
varying extinction is opposite that often adopted for photoelectric photometry
reductions, where mean extinction coefficients for a site are used and the zeropoint
is allowed to fluctuate nightly. Given the inherent stability of CCDs the former
approach seems more reasonable. Figure 3 shows typical transformation equation
residuals as a function of time and V-I color for a set of standard stars observed
with an RCA CCD during a photometric night on the 0.9m telescope at CTIO.
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Fig. 3. Residuals from the derived relations:

Vstd = Vinst + 22.509 - 0.015 (V-I)gq - 0.155 Xy + 0.0045 UTy, and

Istd = ijngt + 21.248 - 0.018 (V-I)gd - 0.063 X; + 0.0045 UT;

are plotted as a function of standard V-I color and UT (expressed in
decimal hours) for the standard star observations on a photometric night.
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Note that for this particular night, the transformation equations required a linear UT
term, presumably as a result of the mean extinction changing uniformly during the
night.

4.3 An Example
To illustrate that the procedures described in this contribution can actually produce

accurate results, it concludes with a comparison of two completely independent
sets of CCD photometry of stars in the globular cluster Pal 12. The first set is that
of Stetson et al. (1989). Their data consist of B and V observations mostly
obtained at the CHFT, using 2 different RCA CCDs, but with some additional data
from the CTIO 4m taken with a third RCA CCD. The observations were calibrated
primarily with standards from Landolt (1973) but also with standard stars from a
field in M92 (Stetson & Harris 1988), from Landolt (1983a) and from Graham
(1982). The frames were analyzed using the DAOPHOT PSF-fitting code. The
second set of data is that from Da Costa & Armandroff (1990). Here V and 1
observations were obtained at CTIO using 2 different RCA CCDs on the 0.9m
telescope. Standards from Landolt (1983a,b) and from Graham (1982) were used
to calibrate the data and the Pal 12 stars were measured via the aperture photometry
techniques described above (i.e. measurement with a small aperture followed by
application of an aperture correction).

There are 17 stars, with 14.5 <V < 18.0, in common between the two
studies. For these stars, the mean difference in the V magnitudes is:

V(DaC & A) - V(PBS et al.) =-0.003 mag
and the standard deviation of the differences is:
o[V(DaC & A) - V(PBS et al.)] = 0.008 mag

The small size of these numbers was extremely gratifying to both groups!

Other examples of comparisons between CCD and conventional photoelectric
photometry are given in Da Costa & Armandroff (1990) and in Walker (1990).
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