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Abstract. This lecture describes how the visibility samples collected by an interferometric
array can be used to produce a high quality image of the sky. In contrast to the linear methods
of Lecture 7, these methods are all non-linear, and must create estimates of the visibility
function at positions in the Fourier plane where it is not measured. The two most common
algorithms used, CLEAN and MEM, are discussed in detail, with several variations and less
common algorithms mentioned briefly. An example comparison between CLEAN and MEM is
given on a simulated VLBA observation.

1. Deconvolution

As described in Lectures 1 and 2, an interferometric array provides samples
of the complex visibility function of the source at various points in the (u,v)
plane. Under various approximations, which are valid for a sufficiently small
source in an otherwise blank region of sky (see Lecture 1, Sec. 4.2 and Lec-
ture 2, Sec. 6), the visibility function V(u,v) is related to the source intensity
distribution I(I,m) (multiplied by the primary beam of the array elements) by
a two-dimensional Fourier transform:

V(u,v) = / / I(1,m)e~2miu+m) gi g | (8-1)
S

where S denotes taking the integral over the whole sky, as in Equation 2-5.
Since only a finite number of noisy samples of the visibility function are

measured in practice, I(l,m) itself cannot be recovered directly. Either a model

with a finite number of parameters, or some stable non-parametric apEroach,

must be used to estimate I(l,m). A convenient general purpose model I of the
source intensity that is capable of representing all the visibility data consists

of a two-dimensional grid of J-functions with strengths I(pAl, gAm), where Al
and Am are the separations of the grid elements in the two orthogonal sky

coordinates. The visibility V' predicted by this model is given by

Nl Nm
V(u,v) =Y > T(pAl, gAm)e~2milpPusl+auam) (8-2)
p=1¢=1

For simplicity we will henceforth denote the discrete form I| (pAl,qAm) by the

notation Ip 4. Assuming reasonably uniform sampling of a region of the (u,v)
plane, one can expect to estimate source features with widths ranging from
O(1/ max(u,v)) up to O(1/ min(u,v)). The grid spacings, Al and Am, and
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the number of pixels on each axis, N; and N,,, must allow representation of all
these scales In terms of the range of (1u v) points sampled the requirements
are Al < 5 , Am < 50—, NJAl > =, and N, Am > ——. This model has

NN, free parameters, namely the cell ﬂux densities Ip,q. The measurements
constrain the model such that at the sampled (u,v) points

V (uk, vk) = V{uk, vk) + e(ur, ve) (8-3)

where €(ug, v ) is a complex, normally distributed random error due to receiver
noise, and k indexes the samples. At points in the (u,v) plane where no sample
was taken, the transform of the model is free to take on any value. One can
think of Equation 8-3 as a multiplicative relation

V(u,v) = W(u,v)(V(u,v) + e(u,v)), (8-4)

where W (u,v) is a weighted sampling function (see Lecture 7, Eq. 7-8) which
is non-zero only for sampled points of the (u,v) plane,

W(u,v) = Z Wid(u — ug, v — vg) - (8-5)

By the convolution theorem , this translates into a convolution relation in the
image plane:

Iy = Z By pyg-glyg +Epg, (8-6)
g
where
2, Z W (ug, vx) Re (V(uk,vk)ez’ri(p""Al"'q”"Am)) (8-7)
and
By, = Z W (ug,vi) Re (62”i(”“kAl+q”kAm)) . (8-8)
k

E, 4 in Equation 8-6 is the noise image obtained by replacing V' in Equation 8-7
by €(ug,vx). Note that the By, given by Equation 8-8 is the point spread
function (beam) that is synthesized after all weighting has been applied (and
after gridding and grid correction if an FFT was used; to keep the notation
concise, we will not signify this gridding and grid correction explicitly). The
Hermitian nature of the visibility has been used in this rearrangement.

Equation 8-4 represents the constraint that the model E,,q, when convolved
with the point spread function By, 4 (also known as the dirty beam) corresponding
to the sampled and weighted (u, v) coverage, should yield szq (known as the dirty
image).

The weighting function W (u,v) can be chosen to favor certain aspects of
the data. For example, setting W (ug,vx) to the reciprocal of the variance of
the error in V (ug,vr) will optimize the signal-to-noise ratio in the final image,
whereas setting it to the reciprocal of some approximation to the local density of
samples will minimize the sidelobe level. Robust weighting is a hybrid approach
which attempts to achieve a good balance between these criteria, (see Lecture 7).

We shall now examine the possible solutions of the convolution equation.
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1.1. The “principal solution” and “invisible distributions”

Let us now consider whether the convolution equation has a unique solution.
Clearly if some of the spatial frequencies allowed in the model are not present in
the data, then changing the amplitudes of the corresponding sinusoids in I will
have no effect on the fit to the data. In effect, the dirty beam filters out these
spatial frequencies. Let Z be an intensity distribution containing only these
unmeasured spatial frequencies. Then B x Z = 0. Hence, if I is a solution of the
convolution equation, so too is I + aZ where a is any number. Thus, as usual,
the existence of homogeneous solutions implies the general non-uniqueness of
any solution in the absence of boundary conditions. An important point to note
is that Equation 8-6 cannot be solved by linear methods, such as I' = A x D
where A is some matrix, since the homogeneous solutions Z will also be absent
from I'. Thus, conventional deconvolution procedures such as inverse filtering,
Wiener filtering, etc. (e.g., Andrews & Hunt 1977) will not work: a nonlinear
procedure is required.

Interferometrists call the homogeneous solutions “invisible distributions”
(Bracewell & Roberts 1954) or “ghosts”. The solution having zero amplitude in
all the unsampled spatial frequencies is usually called the “principal” solution.
Invisible distributions arise from two causes: firstly, the (u,v) coverage extends
only up to finite spatial frequencies, so that the invisible distributions correspond
to finer detail than can be resolved; secondly, holes may exist in the (u,v)
coverage.

The problem of image construction thus can be reduced to that of choosing
plausible invisible distributions to be merged with the principal solution. The
shortcomings of the principal solution must be considered before tackling this
problem.

1.2. Problems with the principal solution

If the data are obtained on a regular grid then the principal solution can be
computed very easily: one must simply choose the weighting function in Equa-
tion 8-7 so that the bias in weight due to the vagaries of sampling are corrected.
For each grid point the visibility samples are summed with appropriate weights,
and the total weight normalized to unity. In such circumstances, known as uni-
form weighting, the principal solution is thus equal to the dirty image and is
given by the convolution of the true brightness distribution with the dirty beam.
For most synthesis arrays currently in use, the dirty beam has sidelobes in the
range 1% to 10%. Sidelobes represent an unavoidable confusion over the true
distribution of any emission in the dirty image, which can be resolved only either
by making further observations or by introducing a priori information such as
the limits in extent of the source. For example, consider uniformly weighted ob-
servations of a point source: the dirty image is just the dirty beam centered on
the point source position. Without a priori information we cannot tell whether
the source is a point or is shaped like the dirty beam. Of course we know that
Stokes parameter I must be positive and that usually radio sources do not re-
semble dirty beams (in particular they do not have sidelobe patterns extending
to infinity) and so we could use this information as an extra clue. One further
unsatisfactory aspect of the principal solution, besides its implausibility, is that
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it changes (sometimes drastically) as more visibility data are added. A better
estimator would possess greater stability.

A priori information is thus the key; in the rest of this lecture we consider
two algorithms which use different constraints on the invisible distributions to
derive solutions to the convolution equation. These algorithms, CLEAN and
the Maximum Entropy Method (MEM), are still the predominant ones used for
deconvolution of radio synthesis images.

2. The CLEAN Algorithm

The CLEAN algorithm, which was devised by J. Hégbom (1974), provides one
solution to the convolution equation by representing the radio source by a num-
ber of point sources in an otherwise empty field of view. A simple iterative
approach is employed to find the positions and strengths of these point sources.
The final deconvolved image, usually known as the CLEAN image, is the sum
of these point components convolved with a CLEAN beam, usually Gaussian,
to de-emphasize the higher spatial frequencies which are usually spuriously ex-
trapolated.

We now describe some of the currently available CLEAN algorithms, in-
cluding two variants of the Hogbom algorithm which are better suited to large
images.

2.1. The Hogbom algorithm

This algorithm proceeds as follows:

1. Find the strength and position of the peak (i.e., of the point brightest in
absolute intensity) in the dirty image, I D, . If desired, one may search for
peaks only in specified areas of the image, called CLEAN windows.

2. Subtract from the dirty image, at the position of the peak, the dirty beam
B multiplied by the peak strength and a damping factor v (< 1, usually
termed the loop gain).

3. Record the position and magnitude of the point source subtracted in a
model.

4. Go to (1) unless any remaining peak is below some user-specified level.
The remainder of the dirty image is now termed the residuals.

5. Convolve the accumulated point source model fp,q with an idealized CLEAN
beam (usually an elliptical Gaussian fitted to the central lobe of the dirty
beam).

6. Add the residuals of the dirty image to the CLEAN image formed in (5).
The last stage is not always performed but can often provide useful diagnostic

information, for example about the noise on the map, residual sidelobes, “bowls”
near the center of the image (Sec. 3.3 below), etc.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



8. DECONVOLUTION 155

2.2. The Clark algorithm

Clark (1980) has developed an FFT-based CLEAN algorithm. A large part of
the work in CLEAN is involved in shifting and scaling the dirty beam; since this
is essentially a convolution it may, in some circumstances, be more efficiently
performed via two-dimensional FFTs. Clark’s algorithm does this, finding ap-
proximate positions and strengths of the components via CLEAN using only a
small patch of the dirty beam.

In detail, the Clark algorithm has two cycles, the major and minor cycles.
The minor cycle proceeds as follows:

1. A beam patch (a segment of the discrete representation of the beam) is
selected to include the highest exterior sidelobe.

2. Points are selected from the dirty image if they have an intensity, as a
fraction of the image peak, greater than the highest exterior sidelobe of
the beam.

3. A list-based Hogbom CLEAN is performed using the beam patch and the
selected points of the dirty image. The stopping criterion for the CLEAN
is roughly such that any remaining points would not be selected in step

(2).

The algorithm then proceeds to a major cycle in which the point source model
found in the minor cycle is transformed via an FFT, multiplied by the weighted
sampling function that is the inverse transform of the beam, transformed back
and subtracted from the dirty image. Any errors introduced in a minor cycle
because of the beam patch approximation are, to some extent, corrected in
subsequent minor cycles.

2.3. The Cotton—Schwab algorithm

Cotton & Schwab (as described in Schwab 1984) have developed a variant of the
Clark algorithm in which the major cycle subtraction of CLEAN components is
performed on the ungridded visibility data. Aliasing noise and gridding errors
can thus be removed provided that the inverse Fourier transform of the CLEAN
components to each (u,v) sample has sufficient accuracy. Two routes are used
for the inverse transform: for small numbers of CLEAN components, a ‘direct
Fourier transform’ is performed and so the accuracy is limited by the precision of
the arithmetic. In the other extreme of a large number of CLEAN components,
an FFT is more efficient but inevitably some errors are introduced in interpo-
lating from the grid to each (u,v) sample. Currently, high order Lagrangian
interpolation is used.

The other considerable advantage of the Cotton-Schwab algorithm, besides
gridding correction, is its ability to image and CLEAN many separate but prox-
imate fields simultaneously. In the minor cycle each field is CLEANed indepen-
dently, but in the major cycles, CLEAN components from all fields are removed.
In calculating the residual image for each field, the full phase equation, including
the w-term, can be used. Thus, the algorithm can correct what is commonly

called the “non-coplanar baselines” distortion of images (see Lectures 2, 7 and
19).
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The Cotton—Schwab algorithm is often faster than the Clark CLEAN, the
major exception occurring for data sets with a large number of visibility sam-
ples, where gridding over and over again becomes prohibitively expensive. The
Cotton-Schwab algorithm also allows CLEANing with smaller guard bands
around the region of interest, hence with smaller image sizes.

This algorithm is implemented in NRAO’s Astronomical Image Processing
System (AIPS) as the classic task MX and the modern version, IMAGR.

2.4. Other related algorithms

Several algorithms have been invented with the aim of correcting some deficien-
cies of CLEAN.

Steer, Dewdney & Ito (1984) developed a variant of the Clark algorithm in
which the minor cycle is replaced by a step of simply taking all points above a
sidelobe-dependent threshold, scaling them and then subtracting normally in the
major cycle. The saving in time can be considerable compared to CLEAN, but
the radio astronomy community has relatively little experience with this variant
of the algorithm. For some sources it can suppress the well known striping of
extended emission, but for high precision deconvolution of moderately compact
objects, it does not appear superior to the basic CLEAN.

Segalovitz & Frieden (1978) proposed an ad hoc modification of the dirty
beam to enhance the smoothness of the resulting CLEAN image. Cornwell
(1983) justified a similar prescription as forcing the minimization of the image
power (i.e., the sum of the squares of the pixel values) and thus pushing down
the extrapolated visibility function. Both approaches seem again to ameliorate
partially the striping instability to which CLEAN is susceptible but possibly at
cost in the overall stability of the algorithm.

Keel (1988) extended the domain of CLEAN to conventional optical imaging
with the ‘c-CLEAN’, where instead of searching for the maximum in the dirty
image residuals, one searches for the peak in signal-to-noise at each pixel. This
change is necessary due to the different character of the noise involved. In spite
of working quite adequately, this has not proved popular in optical work and
other restoration algorithms are generally used instead.

2.5. Practical Details and Problems of CLEAN Usage

Theoretical understanding of CLEAN is relatively poor even though the original
algorithm is about 25 years old. Schwarz (1978, 1979) has analyzed the Hégbom
CLEAN algorithm in some detail. He notes that in the noise-free case the least-
squares minimization of the difference between observed and model visibility,
which CLEAN performs, produces a unique answer if the number of cells in the
model is not greater than the number of independent visibility measurements
contributing to the dirty image and beam (cf. Egs. 8-7 and 8-8), counting real
and imaginary parts separately. This rule is unaffected by the distribution of
(u,v) sample points so that, in principle, super-resolution is possible if enough
data points are available. In practice, however, the introduction of noise and
the use of the FF'T algorithm to calculate the dirty image and beam corrupts
our knowledge of the derivatives of the visibility function upon which super-
resolution is based. (As shown in Chapter 5 of Briggs (1995), CLEAN is in fact
particularly bad at the visibility extrapolation involved in super-resolution and
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is not recommended for the purpose.) Even if the FFT is not used, the presence
of noise means that independence of the data must be redefined. Schwarz has
in fact produced a noise analysis of the least-squares approach but it involves
the inversion of a matrix of side N;/N,, and so is totally impractical for typical
image sizes; furthermore, we are really interested in CLEAN, not the more
limited least-squares method, since CLEAN will still produce a unique answer in
circumstances where the least-squares method is guaranteed to fail. To date no
one has succeeded in producing a noise analysis of CLEAN itself. The existence
of instabilities in CLEAN, which will be discussed later, makes such an analysis
highly desirable.
Schwarz also proves three conditions for the convergence of CLEAN:

1. The beam must be symmetric.

2. The beam must be positive definite or positive semi-definite. Thus the
eigenvalues must be non-negative.

3. The dirty image must be in the range of the dirty beam. Roughly speaking,
there must be no spatial frequencies present in the dirty image which are
not also present in the dirty beam.

All three of these conditions are obeyed in principle for the dirty image and
beam calculated by Equations 8-7 and 8-8 if the weighting function is nowhere
negative. In practice, however, numerical errors, and the gridding and grid-
correction process may cause violation of these conditions. The CLEAN algo-
rithm will therefore diverge eventually. CLEANing close to the edge of a dirty
image computed by an FFT is particularly risky. Even the most simple case
of a three pixel image has been demonstrated by Tan (1986) to be potentially
chaotic. Still, in real cases the algorithm seems to work well.

Marsh & Richardson (1987) showed that for the case of an isolated point
source, the CLEAN algorithm approximately minimizes the sum of the pixel
values in the component model, subject to the constraint that these are positive.
That is, it returns the minimum flux solution consistent with the data. By
comparison with empirical results of deconvolvers which explicitly minimize this
criterion, clearly this is only an approximation even in simple cases—it is not
obvious how far this insight should be trusted.

Thus most of our understanding of CLEAN still comes from a combination
of guessing how to apply intuition and Schwarz’s analysis to real cases, and
much practical experience on real and test data. In the rest of this section we
will attempt to summarize the current lore concerning how the algorithm should
be used, and how it can fail.

2.6. The use of boxes

The region of the image which is searched for the peak can be limited to those
areas (known as the CLEAN windows or bozes) within which emission is known
or guessed to be present. These boxes effectively restrict the number of degrees of
freedom available in the fitting of the data. Schwarz’s work (and common sense)
tells us that the number of such degrees of freedom should be minimized but that
the CLEAN window should include all real emission in the image. For a simple
source in an otherwise uncluttered field of view, one CLEAN window will do,
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but multiple boxes may be needed when CLEANing more complicated sources,
or for a field containing many sources. In the latter case, the presence of weak
sources may be revealed only after the sidelobes of the stronger sources have
been removed; more boxes may therefore be required as the CLEAN progresses.
Note that such a posterior: definition of CLEAN boxes considerably complicates
any possible noise analysis.

The practical implications of Schwarz’s observation that the number of de-
grees of freedom should not exceed the number of independent constraints are
difficult to gauge. In the presence of noise (u,v) points should be judged in-
dependent if the differences in visibility due to the size of structure expected
are much greater than the noise level. Counting visibility points in such a way,
the aggregate area of the CLEAN boxes in pixels should be less than twice the
number of independent visibility points. If the FFT is used (see Lecture 7) then
the number of independent visibility samples cannot be greater than O(N;Ny,),
and so the use of CLEAN boxes is certainly advisable.

Given the uncertainty in determining the number of independent data
points, and hence the number of constraints, caution dictates that boxes should
always be placed tightly around the region to be CLEANed.

2.7. Number of iterations, loop gain and the beam patch size

The number of CLEAN subtractions N¢y and the loop gain v determine how
deep the CLEAN goes. In particular, for a point source the residual left on the
dirty image is (1 — y)VeL. Hence, to minimize the number of CLEAN subtrac-
tions (and so to minimize the CPU time) 7 should be unity; one then finds,
however, that extended structure is not well represented in the corresponding
CLEAN image. In typical VLA applications a reasonable compromise lies in
the range 0.1 <y < 0.25. (Incidentally, this dependence of the CLEAN image
upon the loop gain is a nice demonstration of the multiplicity of solutions to
the convolution equation.) Lower loop gains may be required in cases where
the (u,v) coverage is poor, but experience suggests that the improvements in
deconvolution for y < 0.01 are generally minimal. If one is in any doubt then it
is wise to experiment (e.g., by decreasing « and increasing N¢r). One exception
to the use of low loop gain is in the removal of confusing sources; it is preferable
to remove them with high loop gain, as their structure is usually not of interest.

The choice of the number of iterations depends upon the amount of real
emission in the dirty image. One should aim at transferring all brightness greater
than the noise level to CLEAN components (some implementations of CLEAN
allow one to specify a lower intensity limit to the components instead of N¢p).
CLEAN:Iing deep into the noise is usually a waste of time unless you specifically
wish to analyze the extended, low surface-brightness emission. For high dynamic
range imaging, the highest deconvolution fidelity will occur when CLEANing
very deeply, but the very act of CLEANing noise will alter the statistics and
risks making the image appear better than it really is.

Examination of the list of CLEAN components, and, in particular, of the
behavior of the accumulated intensity in the model, is useful in detecting di-
vergence; sometimes the accumulated intensity diverges. As discussed above,
divergence of the Hogbom CLEAN is always due to a computational problem.
Possible culprits are the gridding process, aliasing, and finite precision arith-

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



8. DECONVOLUTION 159

metic. In the case of the Clark or the Cotton-Schwab algorithms, the truncated
dirty beam patch that is used in the minor cycles of these algorithms must
violate Schwarz’s conditions. Therefore both may be subject to instability or
divergence if the minor cycle is prolonged unduly. The default size of the beam
patch in deconvolution programs was often set at a time when computer memory
was at more of a premium than it is today. For large sources, it is often a wise
idea to override this choice and use a larger beam patch than the default. In
addition to obviously helping to delay divergence in the minor cycle it can also
improve the overall level of the deconvolution by ensuring that there are smaller
errors to be corrected after each major cycle than otherwise.

2.8. The problem of short spacings

Implicit in deconvolution is the interpolation of values for unsampled (u, v) spac-
ings. In most cases CLEAN does this interpolation reasonably well. However,
in the case of short spacings the poor interpolation is sometimes rather more
noticeable since very extended objects have much more power at the short spac-
ings. The error is nearly always an underestimation and is manifested as a
“bowl]” of negative surface-brightness in which the source rests. In such a case,
introducing an estimate of the zero-spacing flux density into the visibility data
before forming the dirty image will sometimes help considerably. The appro-
priate value of this flux density would be that measured by a single element
of the array. In practice, however, single array elements rarely have sufficient
sensitivity or stability to provide this estimate accurately. Values estimated
from surveys made with larger, more sensitive, and more directive elements are
therefore frequently substituted. Choosing the weight for the zero-spacing flux
density is difficult; the best estimate seems to be simply the number of unfilled
cells around the origin of the gridded (u,v) plane. However, the results obtained
are fairly insensitive to the value used provided that the CLEAN deconvolution
goes deep enough. '

The CLEAN windows or boxes may also be viewed as providing crude es-
timates of the shape of the visibility function near the zero spacing u = v = 0.
For this reason, careful choice of CLEAN windows may also minimize problems
associated with the short spacings.

After CLEANing, the emission should be, but is not guaranteed to be,
distributed sensibly over the CLEAN image. Failure of the interpolation is
indicated by the presence of a “pedestal” of surface brightness within the CLEAN
box upon which the source rests. Such a pedestal all over the CLEAN image
can be caused by insufficient CLEANing of the dirty image; one can experiment
by simply increasing N¢y. Ultimately, it may actually be necessary to measure
the appropriate data!

2.9. The CLEAN beam

The CLEAN beam (more generally called the restoring beam) is used to sup-
press the higher spatial frequencies which are poorly estimated by the CLEAN
algorithm. There are two competing opinions on this in the radio astronomy
community: some object that it is purely ad hoc and is undesirable—in the
sense that the equivalent predicted visibilities do not then agree with those ob-
served. Others defend it as a way of recognizing the inherent limit to resolution.
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In practice, it does appear to be necessary in order to produce astrophysically
reasonable images.

The magnitude of just how poorly CLEAN extrapolates past the sampling
envelope has only recently been appreciated—the errors in the restored image
comes almost always from the extrapolated region in the (u,v) plane and rarely
from interior holes in the sampling. Thus there is a straightforward tradeoff in
resolution against image fidelity controlled by the size of the restoring beam.
The most common method of choosing the restoring beam is to fit an elliptical
Gaussian to the central region of the dirty beam, but this default is not man-
dated. A smaller restoring beam allows more of the erroneously extrapolated
model into the final solution and yields poorer fidelity in the name of higher res-
olution. Conversely, a larger than default CLEAN beam can produce a highly
accurate deconvolution. This tradeoff is explored pragmatically in Chapter 5 of
Briggs (1995).

Various attempts have been made to improve the selection of the CLEAN
beam. The dirty beam, truncated outside the first zero-crossing, is appropriate
in some applications since it lacks the extended wings of a Gaussian, but we
emphasize that, after convolution with such a beam, the CLEAN image does
not agree satisfactorily with the original visibilities. An ideal CLEAN beam
might be defined as a function obeying three constraints:

1. Its transform should be unity inside the sampled region of the (u,v) plane.

2. Its transform should tend to zero outside the sampled region as rapidly as
possible.

3. Any negative sidelobes should produce effects comparable with the noise
level in the CLEAN image.

Constraint (1) is usually the first to be relaxed, and then only positivity of the
transform is necessary. It may be that in typical applications CLEAN performs
so poorly that these constraints do not allow an astrophysically plausible CLEAN
image, however such a topic is probably worth further consideration.

One very important consequence of a poor choice for the CLEAN beam is
that the units of the convolved CLEAN components may not agree with the
units of the residuals. The units of a dirty image are not very well defined but
can be called “Jy per dirty beam area”. The only real meaning of these units is
that an isolated point source of flux density S Jy will show up in the dirty image
as a dirty beam shape with amplitude S Jy per dirty beam area. An extended
source of total flux density S Jy will be seen in the dirty image convolved with
the dirty beam, but the integral will not, in-general, be S Jy. However, convolved
CLEAN components do have sensible units of Jy per CLEAN beam, which can
be converted to Jy per unit area since the equivalent area of the CLEAN beam
is known. Careful control of the dirty beam shape with weighting parameters
as described in Lecture 7 can often produce a more Gaussian-like dirty beam
than the typical defaults, resulting in a better match in the flux scale between
convolved components and residuals. A few imaging programs will also rescale
the residuals with the ratio between the CLEAN beam and the fitted beam
before adding these to the convolved components, but neither approach is a
perfect correction. This issue is most important when significant flux remains in
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the residuals, so when using very non-Gaussian dirty beams and/or a non-fitted
restoring beam, it is best to run CLEAN quite deeply and transfer as much
flux density to the components as possible. In this limit, the integral of the
CLEAN image will often provide an accurate estimate of the flux density of an
extended object—surprisingly often better than that of MEM—usually failing
when the u-v coverage is incomplete on the spacings required. If convergence is
not attained then both flux density and noise estimates taken from the CLEAN
image can be in error.

2.10. Use of a priori models

A priori models of sources can be used to good effect in CLEAN. Perhaps the
best example is in the CLEANing of images of planets; in this case the visibility
function of a circular disk can be subtracted from the observed visibilities before
making the dirty image. CLEAN then needs only to find the small perturbations
from the disk model, and so both the image quality and speed of convergence
should be improved.

2.11. Non-uniqueness

Perhaps the biggest drawback to the use of CLEAN is the way in which the
answers depend upon the various control parameters: the CLEAN boxes, the
loop gain and the number of CLEAN subtractions. By changing these one can,
even for a relatively well-sampled (u,v) plane, produce somewhat different final
CLEAN images. In the absence of an error analysis of CLEAN itself one can do
nothing at all about this problem. Awareness of the possible effects discussed
in this section should however keep you from becoming over-confident in the
final CLEAN image, as will experience of applying CLEAN to a wide range of
different images.

In any one application, Monte Carlo tests of CLEAN can sometimes be
illuminating, and, indeed, provide the only means of estimating the effects of
various data errors and CLEANing strategies upon the final image.

2.12. Instabilities

One particular instability of CLEAN is well known: in CLEAN images of ex-
tended sources one sometimes finds modulations at spatial frequencies corre-
sponding to unsampled parts of the (u,v) plane (see, e.g., Cornwell 1983 for an
example). Convolution with a larger than usual CLEAN beam will sometimes
mask this problem, especially when the unsampled region is in the outer parts of
the (u,v) plane. Reducing the loop gain -y to very low values generally has little
effect, but there is reason to believe that the instability is triggered by noise and
hence that temporarily setting the loop gain equal to the noise-to-signal ratio
when the instability begins may help (U. J. Schwarz, private communication).
Cornwell (1983) has developed a simple modification to the CLEAN al-
gorithm that is sometimes successful in countering the instability. A small-
amplitude delta function is added to the peak of the beam before CLEANing.
The effect of the spike is to perform negative feedback of the CLEAN structure
into the dirty image, and thus to act against any features not required by the
data. Spike heights of a few percent, and lower loop gains than usual are usually
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required. In view of the limited success of this modification, a better solution is
to use another deconvolution algorithm, such as MEM.

The occurrence of the stripes is a natural consequence of the incorrect infor-
mation about radio sources embodied in the CLEAN algorithm. Astronomers
very rarely find convincing evidence for the existence of such stripes in radio
sources and so they are skeptical about such stripes when found in CLEAN im-
ages. Unfortunately the only a priori information built into CLEAN, via the
use of CLEAN boxes, is that astronomers prefer to see mainly blank images;
there is no bias against stripes. Such considerations, and some others, have led
to the development of deconvolution algorithms which either incorporate extra
constraints on astrophysically plausible brightness distributions or are claimed
to produce, in some way, optimal solutions to the deconvolution equation. In
the next section we briefly consider one such algorithm.

3. The Maximum Entropy Method (MEM)

The deconvolution problem is one of selecting one answer from the many possi-
ble. The CLEAN approach is to use a procedure which selects a plausible image
from the set of feasible images. Some of the problems with CLEAN arise because
it is procedural so that there is no simple equation describing the CLEAN im-
age. Thus, for example, a noise analysis of CLEAN is very difficult. By contrast,
the Maximum Entropy Method (MEM) is not procedural: the image selected
is that which fits the data, to within the noise level, and also has maximum
entropy. The use of the term entropy has lead to great confusion over the justi-
fication for MEM. Even today there is no consensus on this subject evident in
the literature (e.g., Frieden 1972; Wernecke & D’Addario 1976; Gull & Daniell
1978; Jaynes 1982; Narayan & Nityananda 1984, 1986; Cornwell & Evans 1985).
We will use the “lowest common denominator” justification and define entropy
as something, which when maximized, produces a positive image with a com-
pressed range in pixel values. Image entropy is therefore not to be confused
with a “physical entropy”, although the logarithmic definition given in equation
8-9 parallels that of of the Boltzman H-function in statistical mechanics (see
Cornwell 1984, Landau & Lifshitz 1980). The compression in pixel values forces
the MEM image to be “smooth”, and the positivity forces super-resolution on
bright, isolated objects. There are many possible forms of this extended type of
entropy, see e.g., Narayan & Nityananda 1984, but one of the best for general
purpose use is:

ZIk hqu;g | (8-9)

where My, is a “default” image incorporated to allow a priori knowledge to be
used. For example, a low resolution image of the object can be used to good
effect as the default.

A requirement that each visibility point be fitted exactly is nearly always
incompatible with the positivity of the MEM image. Consequently, data are
usually incorporated in a constraint that the fit, x?, of the predicted visibility
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to that observed, be close to the expected value:

—

=3 |V(Uka'0kg — V{ug, vp)|? . (8-10)
p

UV(uk ,vk)

Simply maximizing H subject to the constraint that x? be equal to its
expected value leads to an image which fits the long spacings much too well
(better than 1o) and the zero and short spacings very poorly. The cause of
this effect is somewhat obscure but is related to the fact that the entropy H
is insensitive to spatial information. It can be avoided by constraining the
predicted zero-spacing flux density to equal that provided by the user (Cornwell
& Evans 1985).

Algorithms for solving this maximization problem have been given by Wer-
necke & D’Addario (1976), by Cornwell & Evans (1985), and by Skilling & Bryan
(1984). The Cornwell-Evans algorithm is coded in NRAQ’s Astronomical Image
Processing System (AIPS) as VM or VTESS. It is generally faster than CLEAN for
larger images; the break-even point being for images of about 1 million pixels.

4. Practical Details of the Use of MEM
The following description relates to the AIPS MEM algorithm, VM.

4.1. The default image (prior distribution)

Examination of Equation 8-9 reveals that if no data constraints exist, the MEM
image is the default image, so the MEM image is always biased towards the
default. A reasonable “default default” image is flat, with total flux density
equal to that specified. A low-resolution image, if available, can be used as the
default to very good effect; this is a nice way of combining single-dish data with
interferometric data. A spike in the default can sometimes be used to indicate

the presence of an unresolved source, which could otherwise cause problems (see
Sec. 4.5 below).

4.2. Total flux density

As described above, if the total flux density in the MEM image is not specified
then the value found may be seriously biased if the signal-to-noise ratio is low.
There is no real way around this at the moment, except by guessing a value and
then adjusting it to get an image that looks “reasonable” —for example, possess-
ing a flat baseline. For bright objects, only an order-of-magnitude estimate is
required to set the flux density scale. Of course, then the estimated flux density
is not fitted but is used only to set a reasonable default image.

4.3. Varying resolution

In the folklore, MEM is criticized for resolution that depends on the signal-
to-noise ratio. In fact, there are sound theoretical reasons to believe that this
effect is common to all nonlinear algorithms that know about noise (Andrews &
Hunt 1977). If you want to “fix” the resolution in MEM, you basically have two
choices:
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1. Convolve the final MEM image with a Gaussian beam of appropriate width
to smear out the fine scale structure and add the residuals back in.

2. Before deconvolution, convolve the dirty image with a Gaussian beam.

The advantages of (2) over (1) are that the algorithm usually converges faster,
and that given the nonlinear nature of the deconvolution, the answer can be
(and usually is) better. For example, sidelobes around a point source embedded
in extended emission are not well removed by MEM, whereas scheme (2) often
alleviates this effect. The advantages of (1) over (2) are that both image bias
(see below) and errors in gradient representation are substantially alleviated by
adding in the residuals.

There are occasions when the super-resolution exhibited by MEM images
is reliable, although predicting this in advance is not feasible. With careful
modeling of the source, however, it is possible to plausibly defend the physical
reality of super-resolved features, as in Chapter 8 of Briggs (1995). MEM is in
fact the algorithm of choice for super-resolution studies.

4.4. Bias

Another commonly heard complaint about MEM is that the answer is biased,
i.e., that the ensemble average of the estimated noise is not zero. This is certainly
true, and is the price paid by any method which does not try to fit exactly to
the data as CLEAN does. Bias in an estimator is quite common and acceptable
since it usually leads to smaller variance. Cornwell (1980) has estimated the
magnitude of the bias, and has shown that it is much less than the noise for
pixels having signal-to-noise ratio much greater than one. In fact, if the (u,v)
coverage is very good then for bright pixels the effect of noise on an MEM image
is very similar to that on a dirty image. The effect of bias can be substantially
reduced by using a reasonable default such as a previous MEM image smoothed
with a Gaussian; then only the highest spatial frequencies are biased. The effect
of bias can also be eliminated by adding back the residuals after ensuring a
similar flux scale via convolution of the MEM image with a Gaussian as outlined
above.

4.5. Point sources in extended emission

Nearly all the power of MEM to remove sidelobes comes from the positivity
constraint. Hence, if the source sits on a background level of emission, then
the sidelobes will not be removed fully. The only consistently effective solutions
are either (a) to remove the point sources using CLEAN or (b) to smooth the
dirty image prior to deconvolution. MEM has difficult even with isolated point
sources without a background, but only a small degree of resolution — say an
intrinsic feature width of 1/5 of a beamwidth — is necessary for the algorithm to -
perform well.

5. Comparison of CLEAN and MEM

CLEAN has dominated deconvolution in radio astronomy since its invention
nearly 25 years ago, but has not been widely applied in other disciplines. One of
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the major reasons for this is the decomposition into point sources, which is often
not permissible in other types of images. In contrast, MEM has spread to many
different fields, probably because most of the justifications are independent of
the type of data to which it is applied.

The philosophy behind MEM is intriguing and may convince some of you
about the objectivity of MEM (see Jaynes 1982 for an exposition of MEM from
its inventor). For those of you who do not become acolytes, the practical differ-
ences between CLEAN and MEM are probably more interesting.

CLEAN is nearly always faster than MEM for sufficiently small and simple
images, because its approach of optimizing a relatively small number of pixels
is simply more efficient. For typical VLA images, the break-even point is at
around a million pixels of brightness. For very large and complex images, such
as those of supernova remnants, which may contain up to 100 million pixels,
CLEAN is impossibly slow and an MEM-type algorithm is absolutely necessary.

CLEAN images are nearly always rougher than MEM images. This may
be traced to the basic iterative scheme: since what happens to one pixel is not
coupled to what happens to its neighbors, there is no mechanism to introduce
smoothness. MEM couples pixels together by minimizing the spread in pixels’
values, so the resulting images look smooth although the entropy term does not
explicitly contain spatial information.

Both MEM and CLEAN fail to work well on certain types of structure.
CLEAN usually makes extended emission blotchy, and may introduce coherent
errors such as stripes, while MEM copes very poorly with point sources in ex-
tended emission. Both work quite well on isolated sources with simple structure,
and can produce meaningful enhancement of resolution, although MEM seems
to do better in most cases.

Since MEM tries to separate signal and noise, it is necessary to know the
noise level reasonably well. Also, as mentioned above, knowledge of the total
flux density in the image helps considerably. Apart from this MEM has no
other important control parameters, although it can be helped enormously by
specifying a default image. CLEAN makes no attempt to separate out the
noise, and so specification of the noise level is not required. The main control
parameters are the loop gain 7y, and the number of iterations N¢y,, both of which
are important in determining the final deconvolution.

The default image of MEM is a very powerful mechanism for introducing
a priori information. We have previously described the use of a simple image
as a default; however, the default image need not be only a simple fixed set of
numbers, but instead can be used to introduce functional relationships between
pixels. For example, to further encourage smoothness, one might make the
default for a pixel equal to the geometric mean of the brightness of its neighbors
(S. F. Gull, private communication). Only the simple fixed default image can
be easily mimicked by CLEAN: the default image is simply used as the starting
point for the collection of CLEAN components. Thus the use of a disk model
for a planet is an example of the use of a default in CLEAN.
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6. Example

Figures 8-1 and 8-2 give an example deconvolution of a core jet source, adapted
from Cornwell (1995). The data are synthetic, with the model resembling M87
and scaled to the VLBI size regime. The source was ‘observed’ with the VLBA
at a frequency of 1.6 GHz, the declination was 50°, and the coverage was horizon
to horizon down to 15° elevation. That is, the (u,v) coverage is superb by VLBI
standards, and medium to poor by those of the VLA. The bright point source
core and extended jet was designed to demonstrate the strengths and weaknesses
of the two algorithms, with CLEAN performing better on the core, and MEM
performing better on the extended emission. A small amount of thermal noise
was added — below the lowest contour level — but the calibration was assumed
to be perfect.

Figure 8-1 shows the parameters and truth image of the simulation. Panel
(a) shows the model, smoothed to the same resolution as the restored images.
The (u,v) coverage is in panel (b) and the visibility amplitude in panel (c).
Notice that the total flux density is dominated by the extended emission, yet
the point source core will totally dominate the deconvolution in some respects.
Panels (d) and (e) show the uniformly weighted beam used in this simulation.
The former has lowest contour at +2.2% and the latter is a typical slice though
the central portion of the beam.

Figure 8-2 presents the results of different deconvolution strategies. Panel
(a) is a simple Clark CLEAN with a loop gain of 0.1, run to 20,000 components
without any constraint on their position. (The contours are roughly powers of
two from a low of 0.05%.) The image has greatly improved from the dirty image
(not shown), but there is still some evidence of sidelobes paralleling the jet. In
panel (b), components have only been allowed in a tight region surrounding the
model source. The same 20,000 components now produce a very good image,
showing the incorporation of information from the support constraints. Panel
(c) is the same image, but contoured starting a factor of 10 lower.

The lower three panels are all MEM images. The first, panel (d) was
generated with a flat default and the same support constraints as in panel (b).
80 iterations were used, as compared to the more typical 30 and still MEM
is having great difficulty with the point source core. (The image without the
support constraint was even poorer.) In panel (e), a point source model was
fitted to the core of the CLEAN image, then subtracted from the visibility
data. The residuals were imaged with MEM (and the support constraint), and
then final image reassembled—the difference is dramatic. Panel (f) has this
same image contoured down at the level of panel (¢). The best MEM image
is smoother at the lowest contour levels than the best CLEAN image, and has
a different characteristic error pattern. The images are of comparable fidelity.
Remember that MEM has the most difficulty with point sources. If the core had
been resolved so much as half a beam width, the initial MEM image would have
been comparable to the CLEAN image without needing the subtraction.

7. Other Methods, Including Hybrids

Deconvolution in radio astronomy is still dominated by two nonlinear algorithms,
CLEAN and MEM. Other nonlinear algorithms exist and may turn out to be
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useful, at least in the sense that, as with CLEAN and MEM, their defects are
orthogonal to those of other algorithms. This property of defect orthogonality
also suggests the use of a combination of algorithms in the deconvolution of
a single image, so that the virtues of each approach can be exploited. More
novel approaches to deconvolution are under development, but have yet to be
transfered into the mainstream of mundane reduction.

With modern computers, it is now possible to solve for directly the pa-
rameters of the point source model for some interesting objects, via brute force
constrained least squares optimization. Briggs (1995) has applied the NNLS
algorithm of Lawson & Hanson to solve the convolution equation for compact
objects. At present this seems computationally feasible for images having non-
zero flux in about 5000-6000 pixels. The quality of the deconvolved images is
excellent for such sources, though it is actually the interaction of the algorithm
with self-calibration which might prove the most important. A weakness of both
CLEAN and MEM is that they produce highly correlated error patterns in the
(u,v) plane. This correlated error pattern can prove a significant problem when
the deconvolved model is used as input for a self-calibration correction, (see Lec-
ture 10). CLEAN is better than MEM in this regard, though both algorithms
can cause the deconvolution/self-calibration hybrid mapping cycle to stall. By
contrast, NNLS appears to yield a much flatter and less correlated error pat-
tern in the (u,v) plane and interacts extremely well with self-calibration. This
approach might prove fairly useful for VLBI and for very high dynamic range
VLA applications.

Multi-resolution algorithms are becoming more attractive. These all rely
implicitly on the notion that deconvolution of simple objects is easier than com-
plicated ones. In some cases, one actually iteratively solves related deconvolution
problems at different scales, such as in the multi-resolution CLEAN of Wakker
& Schwarz (1991). In others, the multi-resolution aspect is reflected in the
decomposition of the problem into a wavelet domain. (See, e.g., Starck et al.
1994 or Pantin & Starck 1996). The wavelet based methods in particular seem
very promising, but as yet available software is still an impediment to widescale
exploration of these algorithms.

Hybrid techniques attempt to exploit the virtues, while avoiding the pit-
falls, of a number of algorithms simultaneously. For example, the awkward but
common circumstance of deconvolving compact structure on an extended back-
ground can be successfully approached with a shallow CLEANing of compact
structure down to the level of the extended emission, followed by a MEM de-
convolution of what remains. The component models of each method are then
combined, restored, and added to the residuals. A further variant of this ap-
proach which is also effective for multi-pointing deconvolution problems consists
of CLEANIing the individual pointings at the full available resolution and form-
ing the linear combination with appropriate weighting, while using MEM to
simultaneously deconvolve the data at very low resolution. These results are
then merged by extracting the inner Fourier transform plane of the MEM result
and combining it (with appropriate normalization) with the outer Fourier trans-
form plane of the CLEAN result and back-transforming. Surprisingly, while
these techniques have now been used successfully for many years, there is still
no streamlined datapath for the hybrid approachs. The scientist must still do
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Figure 8—-1. Example deconvolution: See text for details.
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much of the bookkeeping involved in combining the results of the different sub-
algorithms.

It is ironic that, formally, more is known about the type of images generated
by MEM than by CLEAN (see e.g., Narayan & Nityananda 1986), since CLEAN
is rather more widely used. Indeed many of the criticisms of MEM arise because
certain of its properties, such as the bias, can be analyzed. Schwarz’s analysis
of CLEAN is incomplete in that it does not address the interesting underdeter-
mined case in which there are fewer data than pixels. We hope that someday
this problem might be investigated satisfactorily.

Although deconvolution algorithms are now as important in determining
the quality of images produced by a radio telescope as the receivers, correlators
and other equipment, they are far less well understood. A good description is
that they are poorly engineered. Only further research and development of new
and existing algorithms can redress this imbalance.
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