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Abstract. This lecture covers formation of the estimated sky brightness via linear methods.
The formalism of the dirty image is developed from the fundamental Fourier transform rela-
tionship between observed visibility and sky brightness. The practical computational approxi-
mation to this formalism is then covered in detail. Several weighting schemes used to control
the shape of the dirty beam are presented. The convolutional gridding used to interpolate
the irregularly sampled data onto a rectangular grid is examined in detail, including aliasing
of sources outside the primary field of view and ramifications of the choice of convolutional
gridding function.

1. Fourier Transform Imaging

A fundamental result of Lectures 1 and 2 was the existence of a Fourier transform
(FT) relationship between the sky brightness I, the primary beam pattern A4,
and the visibility V' observed with an interferometer. From Lecture 2 (Eq. 2-26),

A(l,m)I(l,m) = / /V(u,’u)ezﬂ(“l"'”m) dudv . (7-1)

This simple relation holds if (a) [£% b - (s — s0)| < 1 and (b) |w(i® +m?)| < 1.
These conditions are met whenever the radiation to which the interferometer
pairs respond originates in a suitably small (and confined) region of sky. Since
the correction for the primary beam can be made trivially at the final stage of
data processing! (as discussed in Lecture 1, Sec. 4.4), we shall use I(I,m) to
denote the modified sky brightness, A(l,m)I(l,m).

V is complex-valued and, after the usual calibration steps (see Lecture 5), is
reckoned in units of flux density (‘Janskys’, 1 Jy = 10722 ergs cm~2 s~! Hz™1),
while I has units of surface brightness (flux density per unit of solid angle). A
standard unit for I is Jy/beam area; sometimes Jy per square arcsecond is used
instead. The units are determined by the normalization of Equation 7-1.

Equation 7-1 is used to obtain an estimate of the modified sky brightness
from the observed visibilities, recorded at (u,v) points (ux,vk), &k = 1,..., M.
In practice, M may range from ten to a few hundred with a two element inter-
ferometer, to over a million with a multi-element array like the VLA. With M

!This is assuming that .4 has been carefully measured over a large enough region in (I,m).
Wide-field imaging, in cases in which a source covers, say, a larger region than the central lobe
of the primary beam, is an especial problem. Antennas with azimuth-elevation mounts (as
at the VLA) also present a problem because the primary beam patterns rotate on the sky, as
functions of parallactic angle. See Lecture 6.
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modest, model fitting is feasible—and sometimes useful (see Lecture 16). But
for large M the usual method of estimating I is via the discrete Fourier trans-
form (the DFT), because extremely efficient algorithms are known for numerical
evaluation of DFTs.

The topics of some of the lectures to follow also fall under the broad category
of ‘imaging’. But the discussion here is restricted to ‘simple-minded’ methods
of estimating the sky brightness: that is, directly approximating the right-hand
side of Equation 7-1, via only linear operations. The so-called ‘dirty image’ that
results is a discrete approximation to I”, where (from Lecture 1, Eq. 1-10)

8

IP(1,m) = / S(u,v)V' (u, v)e2™@Hv™) gy, gy . (7-2)

8

Here, S denotes the (u,v) sampling function and V' the observed visibility; the
prime indicates that the visibility data are noise-corrupted measurements. (For

conciseness, I” has been left unprimed, but it too is noise-corrupted whenever
V is.)

1.1. The ‘direct Fourier transform’ and the FFT

Either of two methods is commonly used to numerically approximate the Fourier
transform in Equation 7-2. The first, called the ‘direct Fourier transform’
method,? approximates I”(I,m) by brute-force evaluation of the sum

M
_]% Z V’(uk, ,Uk)e27ri(ukl+vkm) X (7_3)
k=1

If this ‘direct Fourier transform’ is evaluated at every point of an N x N grid,
the number of real multiplications required is 4M N2 (the number is halved,
though, assuming Hermitian data). In practice M is usually of the same order
as N2, so the number of multiplications goes roughly as N%. The number of sine
and cosine evaluations required is also O(N*), as is the number of additions/
subtractions.

The second method requires interpolating the data onto a rectangular grid,
so that a fast Fourier transform (FFT) algorithm can be used. The process
of interpolation is referred to as gridding. (Gridding may require sorting the

2This choice of terminology is unfortunate. The natural abbreviation for the term—DFT’'—is
used almost universally (by everyone except radio astronomers) to stand for something else:
the ‘discrete Fourier transform’. For example, the 2-D discrete FT of an M x N matrix (zi;)
is the M x N matrix (yx:) given by

M N
ot = Z (EZWi(p—l)(k—l)/M Zmpqe%ri(q—l)(l—l)/N) '

p=1 g=1

The major distinction between the two usages is that in one case the data are regularly spaced,
and in the other they are not. Also, the ‘direct FT’ is generally not invertible, whereas the
‘discrete F'T’ is; usually the term ‘transform’ is reserved for invertible transformations.
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data into order of decreasing |u| or decreasing |v|.) The number of elementary
arithmetic operations required by the technique most often used for gridding
is O(M). The number of such operations required by an FFT algorithm (say,
the Cooley-Tukey algorithm) is only a few times N2 log, N —not O(N*)! This
saves much computing time for large databases, and large N especially, if an
economical method of interpolation is used. However, for making small images
(i.e., for N small) from small databases (M small), the ‘direct Fourier transform’
may be faster than the combination of gridding and FFT.

In the following sections we first discuss weighting and selection of (u,v)
data and how it affects the resulting images. This applies no matter how the
Fourier transform is approximated. Then we touch upon the problems that are
introduced by gridding the data to permit use of the FFT—the problems of
aliasing and correction for gridding. '

2. The Sampling Function, and Weighting the Visibility Data

The sampling function S and its Fourier transform, the synthesized beam B,
were introduced in Lecture 1. In practice the data are variously weighted, ac-
cording to their reliability and to control the shape of the synthesized beam.

2.1. The sampling function

S is a ‘generalized function’, or ‘distribution’, which may be expressed in terms
of the two-dimensional Dirac delta function, or ‘4-distribution’,

M
S(u,v) = ZJ(U — Uk, V — V) - (7-4)
k=1

It is useful to introduce a second generalized function, called the sampled visi-
bility function or, alternatively, the (u,v) measurement distribution,’

M
V3(u,v) = Z 6(u — ug, v — vg) V' (ug, vg) . (7-5)
k=1

That is, V° = SV'. Let § denote the Fourier transform operator. Equation 7-2
can be rewritten

IP =3FVS = F(SV). (7-6)

By the convolution theorem, which says that the Fourier transform of a product
of functions is the convolution of their FTs (see, e.g., Bracewell 1978),

IP =FS« V', (7-7)

3Note that the visibility measurements are not, in actuality, point samples of the inverse Fourier
transform of the modified sky brightness AI, but that instead they represent local averages of it.
Time- and frequency-averaging, which are discussed in Lecture 2, are the dominant averaging
effects. One should try to choose observing parameters (integration time and bandwidth) that
make relatively safe our assumption here about §-function sampling. This matter is further
discussed in Lectures 17 and 18.
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where * denotes convolution. For a point source of unit strength, centered at
position (lg,mg), |V'(u,v)] = 1 (plus noise), and §V' is the (shifted) Dirac 6-
function: §V'(l,m) = 6(l — lp,m — myp). So the point source response of the
array, i.e., the synthesized beam, is given by B = §S * § = §S. Equation 7-7 is
the familiar result (Lecture 1, Eq. 1-11) that the observed brightness is the true
brightness convolved with this ‘beam’.

It should be apparent that the so-called ‘direct Fourier transform’, as de-
fined by Equation 7-3, is ezactly I”. That is to say, that—assuming é-function
sampling— I'°(I,m), as defined by Equation 7-2, is given exactly by the discrete
summation Eq. 7-3. Equation 7-7 holds exactly for the ‘direct Fourier trans-
form’ method, (an analogous relation is given below for the FFT method). Of
course, a computed ‘direct Fourier transform’ image is indeed an approximation,
but only in the sense that it is inevitably a discretely sampled version of I” and
that the sums are computed in finite precision arithmetic.

2.2. Weighting functions for control of the beam shape

In analogy to Equation 74, a weighted sampling function, or weighted sampling
distribution, can be written as

M
W (u,v) = Z Ry Ty Dyé(u — ug,v — vg) - (7-8)
k=1

And, in analogy to Equation 7-5, one can define a weighted, sampled visibility
function, or weighted and sampled measurement distribution, VYW according to
VW = WV, or, explicitly,

M
V7 (u,v) =) RiTkDid(u — ug,v — ve) V' (ug, vg) - (7-9)
k=1

The coefficients Ry, Tk, and Dy (discussed below) are weights assigned the vis-
ibility points. These data points may represent time-averages of visibility mea-
surements spaced along the loci of the (u,v) tracks. Ry is a weight that indicates
the reliability of the k! visibility datum. It may depend on the integration time,
the system temperature, and the bandwidth used for that data point.

There is no control over the value of Ry in the image formation, and one
might hope to ignore it here. Yet the manner in which the data samples are com-
bined will influence the sensitivity of the final map as discussed in Lecture 8. It
is an unfortunate reality that the data weighting which produces the most desir-
able beam from an imaging standpoint will often utilize the data very irregularly
and result in poor sensitivity—the subjects of imaging and sensitivity are inex-
tricably linked. The procedure for best balancing the desirable properties of low
& uniform sidelobes, high resolution, and high sensitivity for a given project is
complicated and still somewhat heuristic, though some progress has been made
towards reasonable compromises that work well in the majority of cases. Here
we present several examples showing the effect of different parameters on the
weighting, but be aware that the best strategy for a given project may use more
than one in combination. See Briggs (1995) for a more exhaustive treatment of
different weighting strategies.
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The full data calibration may not be available at the imaging stage, but it
is often the case that the thermal variation of the data sample is the dominant
contribution to R or that the non-random components of Ry can be ignored.
In this case, it can be assumed that Ry is proportional to the inverse variance
of the sample distributions of Re V) and Im V). The factor by which the point
source sensitivity of the output dirty map is degraded by the choice of the T}
and Dy can then be calculated. This has been called the weighting noise or the
normalized thermal RMS, and is given by

WThoise = AIP JAIR, = (ZT2D2Rk ZR / > T:D;R; (7-10)

k=1

See Lecture 8 or Briggs (1995) for the full derivation. Modern imaging programs
now often display this quantity, giving the careful user quantitative feedback
about the effect of the weighting on sensitivity.

If S were a smooth, well-behaved function—say, a Gaussian—then B would
have no sidelobes, just smooth ‘wings’. In practice, S is a linear combination
of many 4-functions, often with gaps in the (u,v) coverage corresponding to
missing interferometer spacings. There is always a finite limit to the extent of
the (u,v) coverage, corresponding to the largest (projected) spacing of interfer-
ometer elements. In addition, for most arrays more data points fall in the inner
region of the (u,v) plane than further out. This tends to give higher weight
to the low spatial frequencies. Thus the natural sampling may impair effective
deconvolution or mask interesting features of 1. All of these real world concerns
combine to produce a beam which is rarely what the astronomer wishes. The
density weight Dy and the taper T} are completely arbitrary and can be speci-
fied in many Fourier transform imaging programs, to ‘fine-tune’ the beam shape
and combat the natural sampling as best possible. They are factored into two
independent functions purely for convenience in specification. The T} are used
to downweight the data at the outer edge of the (u,v) coverage, and thus to
suppress small-scale sidelobes and increase the beamwidth. The Dy are used to
offset the high concentration of (u,v) tracks near the center, and to lessen the
sidelobes caused by gaps in the coverage; i.e., to simulate more uniform (u,v)
coverage. We shall discuss these forms of weighting separately.

The tapering function The T} are specified by a smooth function T: T} =
T(ug,vk). T is usually separable, so that T'(u,v) = T} (u)T>(v); and often it is
a radial function (i.e., a function with circular symmetry): Ty = T(ry) where

Tt = y/ui +vl. Although functions whose radial profiles follow a power-law

or powers of a cosine are occasionally used, the most prevalent form is the
Gaussian. The dispersion, or the half-width at half amplitude, or the half-width
at 0.30 amplitude are used in different data reduction programs to specify the
characteristic width (or widths) of T' (see Fig. 7-1). The modern trend has been
towards specification of the taper by the equivalent convolution with a Gaussian
function in the image plane, so Fig. 7-1 also gives a short table of conversions
between the two conventions.

For a Gaussian taper, T(r) = exp(—r2/20?), the half-power beamwidth
(i.e., the width of the synthesized beam, measured between half-amplitude points)
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-

UV Taper
(AIPS++/miriad/SDE)
Byplasec) = 77.3/r go,(kA)
Byplasec) = 81.0/r  (kA)
Byp(asec) = 120/r 5(kA)
Oyplasec) = 166/r ,(kA)

0.6 » T(r) = 0.607 (mapper) ]
' 1.00
T(r) » T(r) = 0.50
1.18
0.4 | B

> T(r) = 0.30 (AIPS)

1.55
0.2 | -
< T(r) = 0.10
2.15
0 _ “ n 1 i " " " 1 " " " 4 il : i 1 L Il L A " n N i
0 0.5 1 1.5 2 2.5

r(kA)

Figure 7-1. A Gaussian (u,v) taper with dispersion o = 1 km.

is Oupew = 0.37/0 with 6 in radians and o in wavelengths. Translated into
common units, fgppw = 0.77)\(cm) /a(km) arcseconds. This holds only for a
densely sampled Gaussian that is not truncated by the edge of the (u,v) cover-
age. When the taper is negligible at the edge of the (u,v) coverage (assuming
dense coverage), one can use a filled circular aperture approximation, for which
fupBW = 2.0A(cm)/a(xm) arcseconds, where a is the radius of the aperture. Real-
life observational geometries and (u,v) coverages often produce larger Ogppw
and, frequently, elongated beams. Examples of the VLA point source response
with different (u,v) tapers are shown in Figure 7-2.

Instead of de-emphasizing data near the outer boundary of the (u,v) cov-
erage, it is sometimes desirable to downweight the data near u = v = 0. An
undersampled large-scale emission region may introduce large undulations in
image intensity that are hard to remove. These can present a problem for
detecting a weak point source embedded within a region containing extended
emission. Minimum (u,v) limits and other forms of downweighting are often
used to diminish the effect of these low spatial frequency data points.

Finally, while one normally thinks of tapering as downweighting the visibil-
ity data as a function of radius, it is also possible to inverse taper and upweight
the higher spatial frequencies instead. An upweighting has no equivalent finite
convolution in the image plane, but it can arise in the solution of a convolution
equation between two Gaussians. If one wishes to form a Gaussian beam of a
given shape—say for matching resolution between images of an object at two
epochs—one can solve the equation Byarget = taper x B for the equivalent taper
in the visibility plane. This might involve an inverse taper, but can still yield
reasonable results if the upweighting is not too severe. Unfortunately, few imag-
ing programs are able to do this yet, but the capability will likely become more
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Figure 7-2. The effect of a Gaussian taper on the point source response of a VLA
snapshot in the A configuration at 20-cm wavelength. As a narrower Gaussian taper
(i.e., a heavier tapering) is applied, the half-power width of the point spread function
increases and the inner sidelobes are reduced.

common in the future. Details of this formalism are given in Appendices B-D
of Briggs 95.

The density weighting function: The density weighting function can be used
to compensate for the clumping of data in the (u,v) plane by weighting by the
reciprocal of the local data density. Two choices for this weighting are commonly
provided:

Dy =1, called natural weighting, (7-11)

1
and D; =

—_, called uniform weighting, 7-12
AD) f ghting (7-12)

where N,(k) is the number of data points within a symmetric region of the (u,v)
plane, of characteristic width s, centered on the k' data point. (s might be the
radius of a circle or the width of a square.)

Natural weighting, with all points treated alike, gives the best signal-to-
noise ratio for detecting weak sources. However, since the (u,v) tracks tend
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to spend more time per unit area near the (u,v) origin, natural weighting em-
phasizes the data from the short spacings, and tends to produce a beam with
a broad, low-level plateau. This latter feature is especially undesirable when
imaging sources with both large-scale and small-scale structure.

With uniform weighting, a common choice for Ny is to count all the points
that lie within a rectangular block of grid cells in the neighborhood of the kB
datum (gridding is discussed later).* This produces a beam specified largely by
the tapering function T'. In the case where different points have different reliabil-
ity weights Ry, the N,(k) is usually replaced by the total reliability weightsum
in that same region. In most Fourier transform imaging programs s is a free
parameter selected by the user. The default value of s is usually a function of
the physical image dimension, so by merely changing the image or pixel size,
one is also changing the uniform density weights.

Sometimes, especially in the VLA ‘snapshot’ mode of observing, uniform
weighting may not be ‘uniform’ enough. Although all cells have equal weight,
the filled cells are still concentrated toward the center and along the arms of the
VLA “Y’. At the further expense of signal-to-noise ratio, the size parameter s can
be increased. This ‘super-uniform weighting’ gives lightly sampled, isolated cells
weights comparable to those given cells in well-sampled parts of the plane. The
result is again a beam shape controlled more by the tapering function and less by
the arrangement of the sampled visibilities. Examples of the VLA point source
response obtained with various weighting functions are shown in Figure 7-3.

A hybrid form of the uniform and natural weighting called robust weighting
has recently been introduced, which arises from a minimization of the summed
sidelobe power and thermal noise. A typical tradeoff between beam resolution
and weighting noise for a full track VLA observation, traced by varying the
robustness parameter, is shown in Figure 7-4. Characteristically this trade-
off curve is an ‘L’ shape, meaning that one can profitably work either in the
knee of the curve for a compromise beam with intermediate properties in both
parameters, or work on one leg of the ‘L’ and slightly improve one parameter
without greatly affecting the other. This weighting scheme is currently available
in most packages and is discussed extensively in Chapter 3 of Briggs (1995). As
with the other weighting parameters described, the most appropriate robustness
parameter for a given dataset must be determined empirically.

3. Gridding the Visibility Data

To take advantage of the extreme efficiency of the FFT algorithm, visibility val-
ues must be assigned to a regular, rectangular matrix or ‘grid’, usually with a
power-of-two number of points along each side. Since the observed data seldom
lie on such a grid, some procedure (an interpolation procedure comes most read-
ily to mind) must be used to assign visibility values at the grid points, based on

“In the AIPS implementation, these blocks are called ‘uniform weight boxes’, and the size of
the weight box determines the degree of super-uniform weighting. In AIPS++ /miriad/SDE,
super-uniform weighting is specified with a Field of View (FOV) parameter. In most respects,
an AIPS box size of N is equivalent to an FOV of 1/N.
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Figure 7-3. The effect of different weighting functions on a VLA ‘snapshot’ image
of a point source.

the observed values.> There are many ways to achieve this interpolation (see,
e.g., Thompson & Bracewell 1974), but with quasi-randomly placed observations
a convolutional procedure in the (u,v) plane leads to an image with predictable
distortions and to results that are easy to visualize. Convolution is not, in fact,
a pure interpolation procedure, since it combines smoothing, or averaging, with
interpolation. This should not be viewed as undesirable—given that there often
are many noisy, possibly discrepant, data points in the neighborhood of a given
grid point.

3.1. Gridding by convolution

The idea is to convolve the weighted, sampled measurement distribution VW
with some suitably chosen function C, and to sample this convolution at the

®Some special array geometries (e.g., “I’s and Crosses, with elements aligned linearly N-S and
E-W) can provide regularly spaced data. See, for example, the description of the Clark Lake
array by Erickson et al. (1982). The assumption (mentioned below) of a sufficiently large
number of data points in the neighborhood of each filled ‘cell’ is not required. However aliasing
problems persist, because of the regular sampling.
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Figure 7—4. The effect of robustness parameter on weighting noise and beam shape
for a full track VLA observation. The Uniform and Robust=—1 traces in panel (b),
are visually identical, with the Robust=—.5 trace just above them. Notice that all
plotted traces are distinct in WTnoise, however.

center of each ‘cell’ of the grid. For economy’s sake—and because it seems
reasonable for the value assigned at a given grid point to equal some local average
of the measurements— C, in practice, is always taken to be identically zero
outside some small, bounded region Ac. Since VW is a linear combination of
M $-functions, this convolution C * VW, evaluated at the grid point (u,wv,.), is
given by

M

Z C(ue — Uk, ve — i) VW (ug, vi) . (7-13)

k=1

Note that, since the region A¢ is quite small in area, there are generally many
fewer than M nonzero terms in this sum.

Note also that Eq. 7-13 does not, in fact, represent a local average of the
measurements in the neighborhood of (u.,v.). For that, some sort of normal-
ization would be required—say, multiplication by the area of A¢, followed by
division by the number of data points whose shifted coordinates (u; —ug, ve —vk)
lie within the region A¢ (and one would want C' to integrate to unity). When this
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particular form of normalization is used, the normalized sum (ignoring weight-
ing) approaches the non-discrete, integral convolution C *V evaluated at (uc,v.)
as the number of measurements increases without bound, provided that the
measurements in .the neighborhood of (u.,v.) are uniformly distributed, and
provided that the noise in V' is well-behaved. In practice, this straightforward
form of normalization is not always incorporated in imaging—so the matter of
normalization becomes intertwined with that of ‘density weighting’, discussed
above.

The operation of sampling C * V" at all points of the grid may be repre-
sented by the equation

VRE=R(C+VY)=R(C*(WV"), (7-14)

where (as usual) multiplication is indicated by juxtaposition and where R, a
‘bed of nails’ resampling function, is given in terms of Bracewell’s ‘sha’ function
(denoted III) by

R(u,v) = Hl(u/Au,v/Av) = i i 0(j —ufAu,k —v/Av). (7-15)

j=—o0k=—00

Here, Au and Av define the cell size—i.e., the separation between grid points.
This operation is called resampling (hence the R-notation) because, as you recall,
the interferometer array earlier provided the samples embodied in V¥ and VW.
Now, since V® is a linear combination of regularly spaced -functions, a matrix
of samples of its Fourier transform §V 2 can be obtained by a discrete Fourier
transform. Thus FVZ can be calculated by the FFT algorithm.

SV E—after normalization, and after one simple correction—is what you
have been seeking: a ‘dirty’ image—a cheap approximation to I D, Denote FVE
by IP. N

Applying the convolution theorem to Equation 7-14, I? is given by

IP =FRx [(§C) (BVY)] = SR+ [(FC) (BW +FV")] . (7-16)

(Please refer now to Fig. 7-5 for a graphical interpretation of Eq. 7-16 and for an
illustration of the operations that are described in the remainder of this section.)

I is its own Fourier transform; R behaves similarly—Dby the dilation property
of the FT (see Sec. 4.1.),

o0 o0
(FR)(I,m) = AuAvII(1Au,mAY) = Aulv D > 6(j — 1Au,k —mAv).
j=—00 k=~00 .

(7-17)
One effect of the resampling is to make I” a periodic function of ! and m,
of period 1/Aw in ! and period 1/Av in m. Another effect, called aliasing, is
also introduced. It, too, arises because of the convolution with the scaled sha
function §R (more on this later, in Sec. 3.2.).

The FFT algorithm generates one period of (a discrete version of) IP. To
image a rectangular region of width N;Af; radians in [ and N,;,A#,, in m, one
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chooses grid spacings satisfying NjAu = 1/A6; and N,Av = 1/A8,, wave-
lengths. An Ny, x N; FFT yields the discretely sampled version of I D Let
P denote the region over which I? is computed— i.e., P, which is called the
primary field of view, is given by |l| < NjAG;/2, |m| < N6, /2.

The net effect of the gridding convolution is to multiply the sky brightness
by a function ¢(I,m), the FT of the convolving function C (i.e., ¢ = §C). The
tapering function T', introduced earlier for control of the beam shape, has the
effect of a convolution in the image domain.

An image representing the point source response of the array, or the ‘dirty
beam’ B, can be obtained by setting all the measurements V' (ug,vi) to unity
and following the steps outlined above. Denote the image so obtained by BP.

Normally, IP and BP are corrected for the effect of the gridding convolution
by pointwise division by ¢: The so-called ‘grid-corrected’ image is given by

SR [C) BV™)] _ I°(,m)

1(t,m) = 3 = m)

(7-18)

and the ‘grid-corrected’ beam by

5D (1 ) = BP(1,m) .
B;(l,m) __c(l,m) . (7-19)

The commonly used term ‘grid corrected’ is, in a way, a misnomer, since one
is actually correcting for the effect of the convolution function C. The grid
correction is not an exact correction, except in the limit of a large number of well-
distributed visibility measurements. It also is not exact due to the presence of
R in Equation 7-14 and §R in Equation 7-16. It could be so only if c(I, m) were
identically zero outside of the region being imaged; this is impossible because C
is confined to a bounded region Ac.%

Finally, I” and B both are normalized by a scaling factor selected so that
the peak of BP is of unit flux density. One may as well not alter the notation
to reflect this, since it is a trivial operation.

If ¢(I,m) tends sufficiently rapidly to zero outside P, so that the resampling
can be ignored, and if the (u,v) samples are well enough distributed for the
gridding correction to be approximately valid, then I? is a good approximation
to I?— that is, Equation 7-16 becomes

IP =FW 3V, (7-20)

—and then the usual convolution relation between I D' B, and I is approximately
valid with I” and BP substituted for I” and B, respectively. Note, however,

5The FT of any nontrivial (i.e., nonzero) function which is confined to a bounded region has fea-
tures extending to infinity. By a theorem of Paley and Wiener (see, e.g., Dym & McKean 1972)
the FT of such a function is extremely well-behaved, in the sense that it can be analytically
extended to an entire function in the complex domain (i.e., in the case of 2 dimensions, from
R? to C?). In particular, the FT cannot vanish over any open set (this is why the synthesized
beam has sidelobes that ‘never go away’).

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



7. IMAGING 139

that E? is usually computed only over a region of the same dimensions as the

image :ch . For this reason, the deconvolution algorithms (described in Lecture 8)
usually operate just on a region with one-quarter the area of the input image.

Figure 7-5 (pp. 140-141). A graphical illustration of the steps in the imaging process is shown
in this one-dimensional example. At the top, in panels (a) and (b), a model source and its
visibility are displayed side-by-side; the results of successive imaging operations are displayed
vertically. The image domain is shown on the left, and the visibility domain on the right.
Horizontally opposed panels represent Fourier transform pairs. The units on the vertical axes
were chosen arbitrarily— i.e., we have not bothered with normalization. The horizontal axes
are in radians for the image domain plots, at left; the baselines are expressed in wavelengths
for the visibility domain plots, at right.

The model source, shown in panel (a), is the sum of a Gaussian-shaped extended source
and four symmetrically placed point sources. The total flux density of the Gaussian is 1.5
times the sum of the fluxes in the point sources. This symmetry was chosen to ensure that
the visibility function, shown in panel (b), is real-valued and even, allowing a simpler display.
Panel (d) shows the telescope transfer function, or sampling function S, which includes a
central ‘hole’. We have chosen a smooth function for simplicity, but one should note that no
array would in fact produce a smooth sampling function. In reality, S is a sea of closely- and
irregularly-spaced §-functions, as in Equation 7-8. The triangular sampling density was chosen
to mimic the fall-off in the density of samples with increasing spacing. The telescope beam
B corresponding to (d) is shown in panel (c¢). The data available for imaging are shown in
panel (f); this product of the true visibility function and the sampling function corresponds to
VS, as defined by Equation 7-9. The image which a direct transformation of (f ) would yield
is shown in panel (e). This image is equal to the convolution of the beam (c) with the true
sky brightness (a). This image shows a large amplitude oscillation, reaching a negative peak
centered on the position of the extended source. This effect, which is of much larger amplitude
than the oscillation seen in (c), is due to the missing central spacings in the (u,v) sampling
and to the fact that the visibility of an extended source is relatively highly concentrated near
u = v = 0. With sufficient computing resources (mammoth resources would often be required),
one might use the ‘direct Fourier transform’ method of Section 1.1.; (e) is the image that would
result.

Extra steps are required to make use of the FFT: First, the data are convolved with
some suitably chosen function, and then they are resampled over a regularly-spaced grid (in
practice the convolution is evaluated only at the grid points). For illustration, a simple, and
crude, convolution function C was employed, as shown in (h). The sharp drop-off in C creates
large, oscillating wings in its Fourier transform, shown in (g) (the image-plane representation
of the ‘grid-correction function’). The data, after convolution, are shown in panel (j). If a
(continuous) Fourier transform were applied at this stage, the result would appear as in panel
(i). The important effect to note is that the outermost point sources have been inverted in
amplitude. This occurs because the convolution function that we have chosen is too wide. The
inner point sources have been slightly reduced in amplitude, though not inverted in sign. As
the FFT requires regularly spaced data, the data in (j) must be sampled. The (re-)sampling
function R is shown in panel (1), and its transform, the replication function, in panel (k).
The resampled, convolved visibility is shown in panel (n). These are the data that the FFT
actually sees. The FT of this is the image shown in panel (m); it has been replicated at the
various points shown in panel (k). Notice that aliases of the outermost point sources appear
just outside the positions of the innermost point sources. This aliasing occurs because the
resampling function, shown in panel (1), undersamples (i.e., takes fewer than 2 samples per
cycle) of the transform of the outermost point sources. The final operation is correcting for the
effect of the convolution. This is done by dividing the image by the Fourier transform of the
convolution function. For this example, only the region of the image where the inner lobe of
¢ > .1 has been retained, though this is not an issue in practice. The result is shown in panel
(o). This is the end product, the ‘dirty image’ that is supplied to the deconvolution programs.
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(Caption is on p. 139). (Continued on next page).
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3.2. Aliasing

Due to the presence of §R in Equation 7-16 and to the fact that c is not
identically zero outside the primary field of view, parts of the sky brightness
that lie outside P are aliased, or ‘folded back’, into P. Undersampling, and
the truncation of the sampling at the boundaries of the (u,v) coverage, are the
root causes of aliasing. (If the sky brightness I has features extending over a
region of width €2; in [ and width €,, in m, then its visibility function has been
undersampled if the visibility samples are separated by more than 1/€; in u
and 1/Q,, in v.) The amplitude of an aliased response from position (I, m) is
determined by |c(l,m)|. The simplest way to tell whether a feature is aliased or
authentic is to calculate images with different cell sizes Af; an aliased feature
then appears to move, while a real one stays the same angular distance from the
image center. Additionally, an image covering the full main lobe of the primary
beam may quickly reveal whether there is an aliasing problem in an image of a
smaller region.

Aliasing of sources that lie outside the primary field of view is only part
of the problem. Although it may be possible to obtain visibility samples that
are closely enough spaced to avoid undersampling over the sampled region of
the (u,v) plane, the finite physical size of the array sets a limit on how far
the sampling can extend. For this reason, any authentic feature within P has
sidelobes extending outside the image. These sidelobes are also aliased into P,
effectively raising the background variance and resulting in a beam shape that
depends on position. If, for example, the visibility function is well sampled
over a square region of the (u,v) plane but no samples are obtained outside
that region, then (assuming uniform weighting) the sidelobes in I'” are precisely
those of Gibbs’ phenomenon, discussed in Lecture 4.

3.3. Choice of a gridding convolution function

The best ways to avoid aliasing problems are (a) to make the image large enough
that there are no sources of interest near the edges of the image, (b) to avoid
undersampling, and (c) to use a gridding convolution function C whose Fourier
transform ¢ drops off very rapidly beyond the edge of the image. Desideratum (c)
favors gridding convolution functions that are not highly confined in the (u,v)
plane. But, in practice, computing time restricts one’s choice of C to functions
that vanish outside a small region, typically six or eight (u,v) grid cells across.
A compromise must be struck between alias rejection and computing time. Most
programs to date have used a width of six cells, though the modern trend may
be moving towards eight.

C is always taken to be real and even. And, since C is usually separable—
i.e., C(u,v) = C1(u)C2(v) —we shall continue the discussion in just one dimen-
sion. Typical choices for C are:

e a ‘pillbox’ function,
e a truncated exponential,
— sinzz

e a truncated sinc function (sincz = #21%),

e an exponential multiplied by a truncated sinc function, and
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e a truncated spheroidal function.

Each is truncated to an interval of width m grid cells, so that C(u) = 0 for
lu| > mAwu/2; thus O(Mm?) arithmetic operations are required for gridding.
These functions are described below; for more discussion see Schwab (1978,
1980):

1, |ul <mAu/2,
0, otherwise.
this C is equivalent to simply summing the data in each cell. Calculation
of these sums is fast, but the alias rejection is the worst of the five functions
considered here. c is a scaled sinc function.

e Pillboz. C(u) = For m = 1, convolution with

o Ezponential. C(u) = exp [— (—IEL)Q} Typically m = 6, w = 1, and

wAu
o = 2. That is, a truncated Gaussian is often used, in which case ¢ can be
expressed in terms of the error function.

o Sinc. C(u) = sinc _%-. Typically m = 6, w = 1. c can be expressed in

terms of the sine integral. If m is allowed to increase, ¢ approaches a step
function that is constant over P and zero outside. This is the intuitive
justification for considering the use of this function, that the FT of a unit
step function truncated at i%— is the sinc function.

e Ezponential times sinc. C(u) = exp [— (—M——>a] sinc —%—. Typically’

w1 Au woAu
m = 6, w; = 2.52, we = 1.55, a = 2; i.e., a truncated, Gaussian-tapered
sinc function is often used. ¢ can easily be computed by numerical quadra-
ture, but it lacks a closed-form expression.

e Spheroidal functions. C(u) = |1 — n?(u)|%*Pao(7m/2,n(u)), with 140 a 0-
order spheroidal function (Stratton 1935), n(u) = 2u/mAu, and o > —1.
For o = 0 this is the 0-order ‘prolate spheroidal wave function’, which is
the optimal C' (among all square-integrable functions of width m grid cells)

in that the energy concentration ratio [, |c(l)|? dl / I le(D)|? di is maxi-
mized. The other 1,0 are optimal in the sense of maximizing a weighted
concentration ratio: for given a, [pw(l)|c(!)|? dl /ffooo w(l)|c(1)|? dl is max-
imized, where w(l) = |1 — 2lAu|®. Choosing a > 0 gives higher alias re-
jection near the center of the image, at the expense of alias rejection near
the edges. qo is its own F'T, in the sense that if you truncate it as done
here, and then take the FT, what you get back is ¥go. Similarly, the other
1o are finite Fourier self-transforms, in the sense that if you so truncate
one, weight it, and transform it, what you get back is ¥,0. %qo is used

at the VLA, with m = 6 and @ = 1 being typical. See Schwab (1984) for
further discussion and additional references.

"For a gridding convolution function of this particular parametric form, these values of the
characteristic widths w1 and w2 are an optimal choice, in the sense described below in the
discussion of go.
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T -
m=8 a=0.0

exp - sinc

logle(E(n))]

Figure 7—6. For some typical gridding convolution functions C, plots of the absolute
value of the Fourier transform of C. (a) The spheroidal function 19, for m =
6, compared with the pillbox function (m = 1); (b) the ‘prolate spheroidal wave
function’ too, m = 6; (c) an optimized Gaussian-tapered sinc function, m = 6; (d)
the spheroidal function ¢_%,0, m = 6. Panel (a) is comparing the function most

commonly used at the VLA with the simple but particularly poor choice of a pillbox.
Adapted from Schwab (1984).

Figure 7-6 shows the Fourier transforms of various typical gridding con-
volution functions, normalized to unity at [ = 0. The abscissa on this plot is
in units of image half-widths, n = 2[Awu, so that n = +1 at the image edges.
The image response is suppressed at the edge for both functions, however the
exp - sinc function is flatter inside P, and drops much faster past the image edge.
The aliased response can, of course, be negative, producing an apparent ‘hole’
in the image.

The plots in Figure 7-6 compare the pillbox function and the Gaussian-
tapered sinc function with several spheroidal functions. The quantity of most
direct importance is the ratio of the intensity of an aliased response to the
intensity the feature would have if it actually lay within the primary field of
view P, at the position of its alias: if ' denotes the position within P at which
the aliased response of a source at position n appears, then this suppression ratio
is given by g(n) = [c(l(n))/c(l(n"))|. (And 7’ is given by n' = ((n+1) mod 2) - 1;
it is useful to sketch a plot to convince oneself of this.) The suppression ratio
for the same functions as in Figure 7-6 is given in Figure 7-7.

The pillbox, exponential, and sinc functions do not give as effective alias
rejection as the exp - sinc or the spheroidal. The exp - sinc has somewhat smaller
corrections and, thus smaller errors (due to round-off noise and to violation of
the assumptions that make the grid correction valid), near the image edges,
while the spheroidal has better rejection beyond the image edge (Schwab 1984).

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



7. IMAGING 145

o T - T T T -
m=8 a=0.0
pillbox
I 1
) 1r !
i
i
L [
~~ !
1
9. - |
- r ) 7
o] 1
~ I
r 1
g |
TI)‘ © (b) : 1 I} ]
w |
[] 1= T =T T 7 T T T |
a exp - sinc m=8 a=-05
[oN
j=]
n
N
o «@ -
o |
~

N

Figure 7-7. The suppression ratio for the same convolution functions as in Fig-
ure 7-6.

Remember that the convolution functions suppress only aliased responses.
Sidelobes which legitimately fall within the primary field of view, whether from
sources inside or outside P, are not suppressed (see Fig. 7-8). With alias sup-
pression of 102 to 103, at two or three image half-widths, it is these sidelobes
which may cause the dominant spurious image features and impair effective
deconvolution.

4. Additional Topics

4.1. Translating, rotating, and stretching images

The Fourier transform possesses three basic symmetry properties that are useful
in radio interferometric imaging. The first important property is the behavior of
the Fourier transform with respect to translation—that is, with respect to a shift
of origin: namely, if you shift a function, i.e., replace f(u) by f(u — Au), and
take the FT you get the same result as if you had first taken the FT and then
multiplied by e?™*AY (here x denotes the variable in the transform domain).
Similarly, if you want a shift of origin Ax in the transform domain, all you need
do is multiply, before transforming, by a factor e~ 2™%4%  Thus, in imaging,
all that is required to achieve a shift of origin in the image is to multiply the
visibilities by the appropriate complex exponentials before transforming.

The second important property is that the Fourier transform commutes with
rotations; that is, if you take the FT and then rotate the coordinate system in
the transform domain, you get the same result as if you had first rotated the
coordinate system and then taken the FT. Thus, to ‘turn an image around’, all
that you need do is rotate the (u,v) coordinates of the visibility data. (It is easy
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Relative Dec (arcsec)

Relative Dec (arcsec)

Relative RA (arcsec) Relative RA (arcsec)

Figure 7-8. The effects of aliasing: (a) a point source at the field center using the
standard spheroidal convolution; (b) the same source near the image edge; (c) the
same source below the image edge—the sidelobe response is unchanged, but there is
no obvious aliased response to the source; (d) the source below the lower image edge,
but using the pillbox convolution function—a dramatic aliased image of the source
appears at the top edge.

to see why the FT has this property: the inner product u - x in the exponential
kernel of the FT is invariant under rotation.) At the VLA, the visibility (u,v)
coordinates are routinely rotated to correct the data for differential precession—
i.e., to put the data into the coordinate reference frame of a standard epoch,
say, J1950 or J2000. Data taken at two different epochs, say a year apart, need
this correction for differential precession before they can be sensibly combined
or compared; routine correction to a standard epoch automatically rectifies this
problem. Additionally, it is sometimes convenient to rotate the coordinate sys-
tem so that features in a source have a particular alignment in an image. For
an elongated source, this can reduce the data storage requirements (by reducing
the number of pixels needed to represent the source by a computed, discrete
image) and therefore aid during deconvolution (see Lecture 8) by reducing the
required number of arithmetic operations.

The third basic symmetry property of the FT is that it anti-commutes with
dilations. That is, if you ‘stretch’ a function linearly and isotropically, then
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its FT ‘shrinks’ proportionately. (That is, the FT of g(u) = f(au) is given
by (§9)(x) = a™™(Ff)(x/). The multiplicative constant ™" depends on the
dimensionality n.) Or, if you linearly stretch a function in just one coordinate,
then its FT ‘shrinks’ proportionately, but in only one of the coordinate direc-
tions. This property is the reason that, for a fixed array geometry, the spatial
resolution increases (i.e., the characteristic width of the synthesized beam beam
decreases) with observing frequency — as the (u, v) coverage expands, the beam
shrinks proportionately.

Following Bracewell (1978), the shift property is sometimes called the shift
theorem, and the dilation property the similarity theorem.

4.2. Practical details of implementation

Many Fourier transform imaging programs do not work quite as described above.
Sometimes the tapering, introduced in Equation 7-8, and specified by T'(u,v),
is applied after gridding. This would appear to make only a minute difference.
But, in the same sense in which it is incorrect to ignore resampling to justify the
grid correction, it is also incorrect to ignore the convolution with §7', which, if
inserted into Equation 7-16, would now appear outside the square brackets.
For economy, Fourier transform imaging programs often do not attempt to
evaluate the gridding convolution function very accurately, but instead use a step
function (tabular) approximation, with steps spaced at increments of, typically,
Awu/100. This introduces another (not very serious) ‘replication’ effect like that
due to §R, but one with a very long period, 100/Au. The grid correction
given by Equation 7-18 should be based now on the FT of the step function
approximation to C rather than on the FT of C itself. For analysis, see Greisen
(1979). (Schwab (1984) gives cheap and accurate rational approximations to the
spheroidal functions; the step function approximation is unnecessary.)

4.3. Non-coplanar baselines

In Equation 7-1 the visibility samples are expressed as a function of two vari-
ables, u and v, rather than as a function of (u,v,w). As shown in Section 6 of
Lecture 2, Equation 7-1 is strictly valid whenever the visibility measurements
are confined to a plane, as they would be if obtained with an interferometer
array whose elements are aligned along an East—West line; and, again as shown
in Lecture 2, this relation is approximately valid when I(l,m) is confined to a
small region of sky—that is, when our condition (b) holds, jw(i2 +m?)| < 1. In
wide-field imaging with non-coplanar baselines, condition (b) is often violated.
Recall from Lecture 2 (Eq. 2-21) the relation

u v ,w) / / A l m 2) —2wz(ul+vm+w(m 1)) dldm . (7~21)
- m

—00 —00

This can be rewritten as

V(u,v,w)e 2™ = (7-22)

T T T Alm)Iq,

/ / / - ml)2 m2 / m2)8—27n(ul+vm+wn) dl dm dn .
—12—m

—00 ~00 —00
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—2miw

Now, by sampling V', weighting by e and the Fourier kernel, and integrating
over (u,v,w), one obtains an analog of Equation 7-2,

!

P @)

I/

This is equal to a familiar looking three-dimensional convolution:

,m) (7-23)

?

m
o0
/ S(u, v, w)V (u, v, w)e” 2w 2rilultvmtwn) g, gy, oy
—0o0

8\8

IP®) = (), BPB) (7-24)
with AL m)I(L,m)
(3) = 2% M), m 12— m2 _
IY(,m,n) = md(n 1-1012-m?2), (7-25)
and
o0 XX
BP O (1, m,n) = / / / S (u, v, w)e? i u+vmtwn) gy gy duw . (7-26)
-0 =0 —O0

Note that I® is a distribution confined to the celestial sphere embedded in a
three dimensional volume and that BP ) is mostly concentrated near the origin,
ie,nearl=m=n=0.

Either of the methods described earlier for approximating I” can be ex-
tended straightforwardly to Equation 7-23. In applying the ‘direct Fourier
transform’ method, one simply uses a discrete summation, in analog to Eq. 7-3.
In the FFT method, w-terms need to be inserted into Eq. 7-13, defining the
gridding operation; a 3-D FFT yields a three-dimensional discretely sampled
image®; and one interpolates this result to obtain data over a spherical cap, a
portion of the surface (I,m,v'1 — 2 — m?). Because usually the importance of
the curvature effect is minor and the data cover a small range of w, Ny, the
number of slices required in the w- and n-dimensions, is small—typically eight
to sixteen. The three dimensional imaging problem will be examined later in
more detail in Lecture 19.

4.4. The Problem with I”? —Sidelobes

An astronomer is seldom satisfied with the approximation to I defined by I D
or with the computed version thereof, I”. This is because of the sidelobes
which contaminate I”. As you have seen, these are due to the finite extent of
the (u,v) coverage and to gaps in the coverage. Sidelobes from bright features
within an image are likely to obscure any fainter features. The process described

®In the FFT method, one normally would want a shift of origin, in order to get the plane tangent
to the celestial sphere at (0,0,1) shifted to the origin of the third coordinate axis of the grid.

This involves multiplying the data by e*™**, which cancels the multiplication by e~ >™** in
Equation 7-23.
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here is usually just the first step in obtaining a better approximation to I.

Because the convolution relation I”? = BP x I, is approximately valid, this
first step provides a starting point for the deconvolution (i.e., sidelobe removal)
process described in Lecture 8. However, in cases of very low signal-to-noise ratio
(as might occur in an observation to determine the detectability of a putative
source) one would often choose not to proceed any further. This is often the
case in spectral line observing, where narrow bandwidths lead to low signal-to-
noise ratios. With modern computers it is very rare to avoid deconvolution for
reasons of computational capacity alone. Basic deconvolution will be described
in Lecture 8, with the necessary extensions for 3-D imaging, mosaicing and
multi-frequency synthesis in Lectures 19-21.

Acknowledgments. We would like to thank Alan Bridle and Rick Perley for numerous
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