ASPCS
 
Back to Volume
Paper: Object Classification with Convolutional Neural Networks: from KiDS to Euclid
Volume: 538, ADASS XXXII
Page: 122
Authors: G. A. Verdoes Kleijn; C. A. Marocico; Y. Mzayek; M. Pöntinen; M. Granvik; O. Williams; J. T. A. de Jong; T. Saifollahi; L. Wang; B. Margalef-Bentabol; A. La Marca; B. Chowdhary Nagam; L. V. E. Koopmans; E. A. Valentijn
DOI: 10.26624/OHEN8831
Abstract: Large-scale imaging surveys have grown ∼1000 times faster than the number of astronomers in the last 3 decades. Using Artificial Intelligence instead of astronomer’s brains for interpretative tasks allows astronomers to keep up with the data. We give a progress report on using Convolutional Neural Networks (CNNs) to classify three classes of rare objects (galaxy mergers, strong gravitational lenses and asteroids) in the Kilo-Degree Survey (KiDS) and the Euclid Survey.
Back to Volume