|
 |
Paper: |
Object Classification with Convolutional Neural Networks: from KiDS to Euclid |
Volume: |
538, ADASS XXXII |
Page: |
122 |
Authors: |
G. A. Verdoes Kleijn; C. A. Marocico; Y. Mzayek; M. Pöntinen; M. Granvik; O. Williams; J. T. A. de Jong; T. Saifollahi; L. Wang; B. Margalef-Bentabol; A. La Marca; B. Chowdhary Nagam; L. V. E. Koopmans; E. A. Valentijn |
DOI: |
10.26624/OHEN8831 |
Abstract: |
Large-scale imaging surveys have grown ∼1000 times faster than the
number of astronomers in the last 3 decades. Using Artificial Intelligence instead of
astronomer’s brains for interpretative tasks allows astronomers to keep up with the data.
We give a progress report on using Convolutional Neural Networks (CNNs) to classify
three classes of rare objects (galaxy mergers, strong gravitational lenses and asteroids)
in the Kilo-Degree Survey (KiDS) and the Euclid Survey. |
|
 |
|
|