Back to Volume
Paper: Solar Differential rotation Maintained by Small- and Large-scale Convection
Volume: 498, Numerical Modeling of Space Plasma Flows ASTRONUM-2014
Page: 154
Authors: Hotta, H.; Rempel, M.; Yokoyama, T.
Abstract: We investigate the solar differential rotation with special interest for the near surface shear layer (NSSL) in a high-resolution hydrodynamic numerical calculation. The sun is rotating differentially. Helioseismology has revealed the detailed structure of the solar differential rotation. One of the most important features is the NSSL. It is thought that the solar differential rotation is maintained by the turbulent thermal convection. In the NSSL convection time scales are short, leading to a regime with weak influence of rotation on convection. In order to reproduce the NSSL by the numerical calculations, we must use a large number of grids and integrate a large number of time steps for covering the broad spatial and temporal scales. This requirements for the NSSL is achieved using our recent efficient numerical method. In the calculation, the global scale and the 10 Mm-scale convection is established simultaneously. Then the solar like NSSL is partially reproduced. Around the NSSL, the convection transports the angular momentum radially inward and generates the poleward meridional flow. The small scale convection acts as the turbulent viscosity on the meridional flow. The turbulent viscous stress balances with the Coriolis force in the NSSL.
Back to Volume