ASPCS
 
Back to Volume
Paper: Gaseous Structures and Mass Drift in Spiral Galaxies: Effects of Arm Strength
Volume: 498, Numerical Modeling of Space Plasma Flows ASTRONUM-2014
Page: 85
Authors: Kim, Y.; Kim, W.-T.
Abstract: Stellar spiral arms in disk galaxies play an important role in the formation of gaseous substructures such as gaseous feathers as well as mass inflows/outflows in the radial direction. We study nonlinear responses of self-gravitating gas to an imposed stellar spiral potential in galactic disks with differing arm strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the radial mass drift rate depend rather sensitively on the arm pattern speed. Quasi-steady spiral shocks can exist only when the normal Mach number is small. The pitch angle of gaseous arms is usually smaller than that of stellar arms. The mass drift rate to the central region is in the range of ∼0.05–3.0Myr–1, with larger values corresponding to stronger and/or slower-rotating arms. Using a normal-mode linear stability analysis together with nonlinear simulations, we show that wiggle instability of spiral shocks is due to the accumulation of potential vorticity at a perturbed shock front, rather than Kelvin-Helmholtz instability as previously suggested.
Back to Volume