ASPCS
 
Back to Volume
Paper: Fingering Convection and its Consequences for Accreting White Dwarfs
Volume: 493, 19th European Workshop on White Dwarfs
Page: 101
Authors: Vauclair, S.; Vauclair, G.; Deal, M.; Wachlin, F. C.
Abstract: A number of white dwarf stars show absoption lines of heavy elements in their spectra. Many of them also exhibit infra-red excess in their spectral energy distribution. These observations prove that these white dwarfs are surrounded by an orbiting debris disk resulting from the disruption of rocky planetesimals, remnants of the primordial planetary system. Part of the material from the debris disk is accreted onto the white dwarfs, explaining the presence of heavy elements in their outer layers. Previous attempts to estimate the accretion rates have overlooked the importance of the fingering convection. The fingering convection is an instability triggered by the accumulation in the white dwarf outer layers of material heavier than the underlying H-rich (for the DA) or the He-rich (for the DB) composition. The fingering convection induces a deep mixing of the accreted material. Our preliminary simulations of the fingering convection show that the effect may be important in DA white dwarfs. The accretion rates needed in order to reproduce the observed heavy element abundances exceed by order of magnitudes the accretion rates estimated when this extra-mixing is ignored. By contrast, in the cases of the DB white dwarfs that we have considered in our simulations the fingering convection either does not occur or has very little effects on the derived accretion rates. We have undertaken a systematic exploration of the consequences of the fingering convection in accreting white dwarfs.
Back to Volume