ASPCS
 
Back to Volume
Paper: Quasi-real-time Adaptive Optics Simulations on GPUs for the Next Generation Extremely Large Telescopes
Volume: 461, Astronomical Data Analysis Software and Systems XXI
Page: 41
Authors: Gratadour, D.
Abstract: Final design studies for the first generation of Adaptive Optics (AO) systems for the E-ELT (European Extremely Large Telescope) should begin in 2012, the first step of which will involve realistic end-to-end numerical simulations of the instruments and their environment. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 100 iterations per second) for ELT-sized on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-aperture of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions. This open source project is distributed under a GPL license and can be used to simulate a wide range of AO systems from classical AO on a medium size telescope to multi-conjugate AO on an ELT. Simulation parameters (number of turbulent layers, turbulence strength, number and position of targets, etc.) can be modified dynamically thanks to the modular underlying implementation using the Standard Template Library. While a simulation run is fully scriptable, a Graphical User Interface is also provided for easier fine tuning of the system parameters and easier access to sophisticated system designs.
Back to Volume